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Abstract: The article presents the results of the implementation of the mathematical planning of the
experiment to determine the optimal parameters of the calibration process of cherry, sweet cherry,
cherry plum, apricot and almond seeds. The essence of this process is the separation of seeds (bones)
of fruit crops into fractions homogenous in size in order to highlight the middle fraction, which is
about 80% of the total number of bones. The bones of the middle fraction are of the highest quality
and are most suitable for sowing. The shape of the bones was evaluated by three parameters: length,
width, and height. Calibration was performed according to the width of the bone. To carry out
experimental studies, a calibration device was developed, the working body of which is the sieve
part. Ball cleaners were used to prevent clogging of the perforated sieve. A mathematical theory of
experimental planning was used. The criterion of optimization for all fruit crops was taken as an
indicator of the quality of bone division into homogeneous fractions. The functional dependence of
this indicator on the frequency and amplitude of oscillations of the grating part of the calibration unit,
as well as on the angle of inclination of the sieves, was investigated. To implement the experimental
data, we used a rotatable Boks plan of the second order. Regression models of the cherry, sweet cherry,
cherry plum, apricot, and almond calibration process were obtained. Adequacy of the models was
assessed by Fisher’s criterion. As a result, the optimal operating parameters of the installation were
determined. This ensures the qualitative separation of the bones of fruit crops into homogeneous
fractions with a mass deviation of up to 7%. An assessment of the quality of work of ball sieve
cleaners was carried out. To do this, we used the coefficient of efficiency of the live cross-section.
With the optimal parameters of the installation, the value of this coefficient of the unit for all fruit
crops is within 0.87 to 0.95. This indicates that the calibration process is of high quality.

Keywords: separation quality; mathematical planning of the experiment; optimum parameters;
optimization criteria; the coefficient of live cross-section efficiency

1. Introduction

One of the ways to reduce the prime cost of fruit crops seedlings (cherries, sweet cher-
ries, cherry plums, apricots and almonds) is to introduce technology into their production
to make using the site for growing rootstocks unnecessary [1–3]. The above technology
eliminates the necessity of operations of digging rootstocks and transplanting them to the
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area of seedling cultivation. That is, the cultivation of rootstocks takes place directly on the
site for seedlings growing with their subsequent grafting of the cultivar.

It is possible to reduce labor costs for sown rootstock care on the site of seedlings
where the distance in a row between the seeds when sowing bones should be between
15 to 17 cm. Thus, the process involves the use of a precision seeder with sowing apparatus
designed to sow calibrated bones. To form the appropriate batches of bones for sowing,
their total mass should be divided into homogeneous in size fractions [4,5].

Following such a practice enables obtaining a batch of bones, which will be aligned in
size with a deviation by weight of up to 10%. This quality can be achieved by ensuring that
sieves are at least 80% free from stuck bones during calibration.

Analysis in recent studies indicates that scientific data on the development of sorting
or calibration machines for agricultural seeds [6–10] are not sufficient for fruit bones.

Therefore, the working out of the unit for fruit bones calibration is a prerequisite for
the application of the above technology [11–14].

The scientific novelty of the obtained results consists of the following: a mathematical
model for the process of calibration of the bones of fruit crops has been obtained, which
establishes dependence between the quality of separation of bones into fractions and the
factors influencing the process of calibration. This allows scientific substantiation of the
technology of seed preparation for sowing. The practical value of the obtained results is in
determining the optimal values of factors influencing the process of seed separation.

2. Materials and Methods

The research program provided definition by experimental methods of the optimal val-
ues of the parameters for laboratory installation operation mode, enabling the achievement
of the required quality of bones calibration [15–18].

The sieves are the principal working part of the machines for seeds sorting and
calibration. They separate seeds into differently sized fractions [19–23].

The obtaining of high-quality material is provided by the effective sieve operation [24].
The process of bones calibration on the sieves includes the following phases:

• Moving the bones on the working surface of the sieve;
• Sifting through the holes of the sieve;
• Cleaning the sieves’ openings from the bones stuck.

The calibration process efficiency depends on the characteristics of these phases [24].
Laboratory unit description. On the basis of the design analysis of the calibration

machines of crop seeds, the structural and technological scheme of the unit for calibration
of fruit cultures bones, given in Figure 1, was substantiated.

The unit consists of the unit sieves part (1), which has movable risers—two front (7)
and two rear (8)—being mounted on the frame and swinging in the horizontal plane from
the action of the connecting rod (2).

On the rear risers (8) the mechanism for adjusting the angle of the sieves’ incline is
being provided. The drive of the unit sieves part consists of an electric motor (4), a belt
drive (5) and a shaft (6), which has a mechanism for adjusting the amplitude of oscillations.
Above the unit sieves part, there is a hopper (9) with a sloping board (10), by means of
which the bones are conveyed to the sieves. For the removal of bone fractions, the unit
sieves part has two gutters (11, 13) and one inclined tray (12). There are three receiving
trays (14) for collecting bone fractions.

The unit sieves part (Figure 2) consisted of two flat stamped sorting sieves (1 and 2),
mounted one below the other. As a result of oscillations of the unit sieves, part of the ball
periodically moves into the space under the sieve.
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Figure 2. Design and technological scheme of arrangement of sorting sieves and ball cleaners. 1—

top sorting sieve;2—lower sorting sieve;3—reflective rod surfaces of ball cleaners; 4—rub-

ber balls; I—large fraction, II—medium fraction; III—small fraction. 

According to this arrangement of sieves, the total bones volume was divided into 

three fractions: large I, medium II and small III. The upper sieve 1 is designed to isolate a 

Figure 1. Structural and technological scheme of the calibration unit. 1—the unit sieves part;
2—connecting rod; 3—frame; 4—electric motor; 5—belt transmission; 6—a shaft with regulation of
amplitude of oscillations; 7—front risers; 8—rear risers with a mechanism for adjusting the angle of
inclination of sieves; 9—a hopper for bones; 10—distribution board; 11, 12,13—trays for removal of
bones fractions; 14—receiving trays.
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Figure 2. Design and technological scheme of arrangement of sorting sieves and ball cleaners. 1—top
sorting sieve; 2—lower sorting sieve;3—reflective rod surfaces of ball cleaners; 4—rubber balls;
I—large fraction, II—medium fraction; III—small fraction.

According to this arrangement of sieves, the total bones volume was divided into
three fractions: large I, medium II and small III. The upper sieve 1 is designed to isolate
a large fraction of the bones, and the lower sieve 2—for the middle. Sieves had circular
openings, which provided the separation of the bones in width. To clean stuck bones from
the holes in the sieve, the ball cleaners were set under the sieves, consisting of rubber balls
(4), located on the reflective rod surfaces (3). The balls exert a shock effect on the sieves,
knocking the stuck bones out of the holes [25–27]. According to the results of previous
theoretical research, the following optimal values of the parameters of the ball cleaner
were obtained [2]:

• ball diameter D = 33 mm;
• distance between the rods t = 23 mm;
• height of space under sieve H = 40 mm.

The method of experimental research provided for determining the optimal values of
the parameters of the sieve part of the installation, by which the qualitative separation of
the bones into fractions occurs, namely:

• oscillation frequencies of the sieve part (n);
• oscillation amplitudes of the sieve part (A);
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• the angle of inclination of the sieves and ball cleaners (β).

The sieve part of the unit for bones calibration of fruit crops with a ball purifier is
shown in Figure 3.
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The criterion of optimization for all fruit crops was taken as an indicator of the quality
of bone division into large, middle and small fractions, where the average fraction should
be 80–85% of the total volume bones.

Such an indicator was determined by the formula:

F(n; A; β) =
∣∣∣εid

large − εex
large

∣∣∣+ ∣∣∣εid
med − εex

med

∣∣∣+ ∣∣∣εid
small − εex

small

∣∣∣ (1)

where εid
i , εex

i —the coefficient of calibration efficiency for each fraction (ideal and experi-
mental value).

The amount of each fraction was determined by the coefficient of calibration efficiency,
which is expressed as a percentage by weight:

εi =
Mi
Mt

·100% (2)

where
Mi—the mass of the obtained bones fraction;
Mt—total mass of bones.

The minimum value of the obtained function (1) most effectively reflects the quality of
the process of calibration of fruit bones. The ideal values of the coefficient of efficiency of
calibration are determined as a result of studies of size-mass parameters [4,5] and confirmed
by manual sieving of a batch of bones [27,28].

The experiments were carried out at a laboratory facility, the flow chart of which is
shown in Figure 1.

Calibrated bones of cherry magalebs, sweet cherries, cherry plums, apricots and
almonds of wild forms, which were selected in accordance with [29], were tested. The
calibration of the bones of each fruit crop was performed on sorting sieves with openings
of appropriate diameters (Table 1).

Table 1. The diameters of the openings of the sieve d, mm.

Fruit Crop Upper Sieve Lower Sieve

Cherry 6.5 5.0

Sweet cherry 8.0 6.5

Cherry plum 13.0 11.0

Apricot 20.0 15.0

Almond 22.0 15.0
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The sieves varied depending on the type of fruit crop whose bones were calibrated,
and the parameters within the following limits:

• oscillation frequency n from 200 to 500 rpm;
• the amplitude of oscillations A from 5 to 10 mm;
• angle of sieves and ball cleaners β from 0 to 20◦.

The drive of the sieve part of the unit (Figure 1) had an electric motor with a rated
frequency of 1500 rpm and a power of 0.27 kW. The oscillation frequency was adjusted by
the use of the HITACHI X200—002 SFEF frequency converter [30], which made it possible
to obtain oscillation frequency values in Hertz and smoothly change its value from 10 to
50 Hz to within 0.08 Hz.

To measure the amplitude of oscillations, a special design of the shaft is provided with
graduation in millimeters applied to its end, which was deposited with the help of VC-1
caliper with the accuracy of 0.1 mm.

The angle of the sieves incline was determined using a protractor and a ruler. The
legs were placed with a ruler with an accuracy of 0.1 mm. The corresponding values of the
incline angles of the sieves β were determined by the formula:

β = arctg
x
y

, (3)

where
x—opposite leg, mm;
y—adjacent leg, mm.

The accuracy of determining the angle of inclination was ± 0.250, which was obtained
by logarithmization and then differentiation of both parts of Equation (3).

Weighing of batches of bones used for calibration was performed on weighing scales
desktop lever dial with the maximum limit of weighing −10 kg DL-10d, with an accuracy
of 5 g.

After calibration, the bones mass of each fraction was weighed on lever scales and elec-
tronic quadrant laboratory scales with tare compensation mechanism QLT-500g depending
on the volume of the experimental batch. Electronic scales enabled obtaining bones mass
values with an accuracy of 0.05 g.

3. Results and Discussion

The optimal values of the parameters of the sieve part of the unit, by which the
qualitative separation of the bones into fractions occurs, were determined with the help of
a rotary second-order Boxing plan [31,32].

The levels of input factors, the coding conditions of the independent variables are
given in Table 2 and the intervals for their variation are shown for all fruit crops.

For these factors, three criteria were tested and analyzed:

1. Student criterion—checking the significance of regression coefficients;
2. Kohren’s criterion—checking the reproducibility of experiments;
3. Fisher criterion—checking the adequacy of the model.

Data processing was done using the Mathematica-5 computer program, MathCad
software and the Microsoft Excel office application.

To study the regularities of the relationship between the independent values x1, x2,
x3 (factors) with the dependent variable y (response function), a regression analysis of the
experimental data was carried out.
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Table 2. Factors variation intervals.

Fruit Crops
Factors n, fluct/min A, mm βββ, deg

The Coded Designation X1 X2 X3

Cherry

Variation Interval 45 2.5 2.5

Basic level (0) 455 7.5 9.5

Top level (+1) 500 10.0 12.0

Lower level (−1) 410 5.0 7.0

Sweet cherry

Variation Interval 65 2.5 3.0

Basic level (0) 415 7.5 7.0

Top level (+1) 480 10.0 10.0

Lower level (−1) 350 5.0 4.0

Cherry plum

Variation Interval 70 2.5 3.0

Basic level (0) 430 7.5 7.0

Top level (+1) 500 10.0 10.0

Lower level (−1) 360 5.0 4.0

Apricot

Variation Interval 50 1.5 4.0

Basic level (0) 450 8.5 6.0

Top level (+1) 500 10.0 9.0

Lower level (−1) 400 7.0 3.0

Almond

Variation Interval 50 2.0 2.0

Basic level (0) 430 8.0 5.0

Top level (+1) 480 10.0 7.0

Lower level (−1) 380 6.0 3.0

As a result, second-order mathematical models of the calibration process of the bones
of fruit crops, which are called regression dependencies, were obtained:

for cherries:

Ycherries = 20.13 + 4.7653·x1 + 13.631·x2 + 6.8943·x3 + 1.5471·x1·x3+
+1.935·x2·x3 + 3.65·x2

1 + 5.0631·x2
2 + 0.6354·x1·x2

(4)

Ysweet cherries = 24.49 + 8.474·x1 + 14.823·x2 + 4.41·x3+
+3.169·x1·x3 + 2.759·x2·x3 + 3.815·x2

1 + 15.445·x2
3 + 8.695·x1·x2

(5)

Yplum cherries = 34.15 + 4.524·x1 + 7.004·x2 + 13.61·x3+
+32.837·x2

1 − 12.71·x2
2 + 3.717·x2

3 + 9.888·x1·x2 + 7.318·x1·x3
(6)

Yapricots = 20.98 + 9.55·x1 + 3.546·x2 + 2.7·x3+
+2.001·x2

1 + 1.04·x2
2 + 9.917·x2

3 + 2.913·x2·x3
(7)

Yalmonds = 28.25 + 16.72·x1 + 4.266·x2 − 1.88·x3+
+12.568·x2

1 + 5.34·x2
2 + 1.73·x2

3 − 2.123·x1·x3 + 5.688·x2·x3
(8)

The regression coefficients were calculated using the known formulas given in [31].
After determining the regression coefficients, their significance was verified by known
formulas given in [31] according to the following method:

• variance characterizing the error of the experiment was determined Dα (Table 3);
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Table 3. Regression statistics of mathematical models of the process of sizing the bones of fruit crops.

Regression Statistics Cherry Sweet Cherry Cherry Plum Apricot Almond

Adequacy variance, Dα 0.600 0.941 2.413 1.850 2.290

Average variance of the whole experiment, Dm 0.200 0.314 0.800 0.617 0.765

Multiple correlation coefficient, R 0.964 0.897 0.999 0.950 0.870

Determination coefficient, R2 0.930 0.804 0.997 0.900 0.750

• variance of reproducibility by the results of the experiments in the center of the de-sign
was calculated Dm (Table 3);

• variances characterizing the errors in determining the coefficients of the regression
equation were found;

• the confidence interval of the regression coefficients was calculated using Student’s
t-criterion, with the number of degrees of freedom f = N·(γ − 1) = 28. Its value is
found from the tables [31]; in our case it is tcr = 2.05;

• confidence intervals are compared to the values of regression coefficients.

Checking the significance of the regression coefficients of the obtained model allows
rejection, with 95% confidence, of the least significant coefficients: cherries b33, sweet
cherries b22, cherry plum b23, apricot b12 and b13, almond b12.

To check the homogeneity of the dispersions of the reproducibility of the experiments,
Kohren’s criterion was used. With the help of this criterion, the repeatability of experiments
is checked within certain measurement limits with a given confidence level. The number of
experiments was k = 14, the number of degrees of freedom f = 2, the number of repetitions
of the experiments was 3. The tabular value of Kohren’s criterion, in accordance with [31]
Gtab = 0.35. Calculated values of Kohren’s criterion Gp are obtained:

• for cherries Gp = 0.21;
• for sweet cherries Gp = 0.31;
• for plum cherries Gp = 0.2;
• for apricots Gp = 0.29;
• for almonds Gp = 0.27.

It was found that for all crops Gp < Gtab; hence, the reproducibility dispersion
is homogeneous.

By the tightness of the relationship between the experimental and theoretical regres-
sion, one can judge the presence of a correlation. To determine the percentage of scatter of
the desired response function (y) relative to its average value, determined by the variability
of the factors x1, x2, x3, regression statistics of mathematical models (4)–(8) were calculated:

• coefficient of multiple correlation R;
• coefficient of determination R2 (r-square).

The calculation results are presented in Table 3.
The coefficient of determination for all cultures averages R2 = 0.87. This means that on

average 87% of the spread is due to variability and 13% to other causes. This means that
the variability of the function (y) is almost completely characterized by a spread of factors.

The adequacy check of the obtained models was carried out according to the Fisher
criterion [31]. It is determined that the hypothesis about the adequacy of the description by
the equation of experimental results is accepted with 95% probability:

• for cherries Fp = 1.71 < Fcr = 2.19;
• for sweet cherries Fp = 1.03 < Fcr = 2.19;
• for plum cherries Fp = 2.01 < Fcr = 2.19;
• for apricots Fp = 1.80 < Fcr = 2.19;
• for almonds Fp = 1.92 < Fcr = 2.19.
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The critical value of the Fisher criterion was determined by the number of degrees of
freedom [31]: f1 = N − (k + 1) = 10; f2 = N·(γ − 1) = 28.

To analyze the obtained Equations (4)–(8), the method of two-dimensional sections
was used. Calculations to determine the optimal values of the optimization parame-
ters in accordance with Equations (4)–(8) were carried out using the computer programs
“Mathematica 5” and “MathCad”.

Consider the application of this method on the example of one crop—cherries. The
resulting regression Equation (5) is reduced to the canonical form. To do this, we move the
origin of coordinates to a new point in the factor space.

Considering that each of the factors varies within:

−1 ≤ X1 ≤ 1;
−1 ≤ X2 ≤ 1;
−1 ≤ X3 ≤ 1;

the coordinates of the new centers in coded form for each crop will be:

R =


x1
x2
x3


The resulting second-order regression equation is differentiated with respect to each

independent variable, x1, x2, x3, and equated to zero.
This gives:

dy
dx1

= 8.474 + 7.63·x1 + 8.695·x2 + 3.169·x3 = 0
dy
dx2

= 14.823 + 8.695·x1 + 2.758·x3 = 0
dy
dx1

= 4.41 + 3.169·x1 + 2.758·x2 + 30.89·x3 = 0

(9)

Solving the system of equations, we obtain the coordinates of the new center:

Rminsweet cherry =


0.053
−1

0.059


Substituting these values into the regression Equation (5), we obtain the value of the

criterion at the minimum point Ymin sweet cherry = 9.61.
Thus, the analysis of Equations (4), (6)–(8) was performed and response surfaces for

all crops were built (Figures 4–8), their appearance determined and an analysis carried out
by the method of two-dimensional sections, depending on the factors of variation, fixing
each of them at a certain level.
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The coordinates of the new centers for cherries, apricots, cherry plums and almonds
are presented here:

Rcherry =


0.364
−1
−1

; Rplum cherry =


0.193
−1
−1

; Rapricot =


−1
−1

0.037

; Ralmonds =


0.581
−1
−1

.

Substituting these values into the regression Equations (4), (6)–(8), we obtain the
values of the optimization criteria at the minimum point:

• for cherries Ymincherry = 6.12;
• for plum cherries Yminplum cherry = 3.32;
• for apricots Yminapricot = 4.84;
• for almonds Yminalmonds = 19.22.

Calculations to determine the optimal values of the optimization parameters according
to Equations (4)–(8) were carried out using the computer algebra system “Mathcad”.

Decoding certain factors have been considered:

X1 =
n − nmean

λn
; X2 =

A − Amean

λA
; X3 =

β − βmean

λβ
,

where nmean , Amean , βmean —the mean values of the frequency parameters, the oscillation
amplitude and the slope angle of the sieves at the basic level of variation (Table 2);

λn, λA, λβ– are the intervals of variation in the parameters of the oscillation frequency,
the amplitude of oscillations and the slope angle (Table 2).

Then, the regression Equations (4)–(8) can be written in the decoded form:

F(n; A; β)cherry = 421.432 − 1.7n − 12.21A − 5.514a+
+0.0131na + 0.3096Aa + 0.0018n2 + 0.81A2 + 0.005648 nA

(10)

F(n; A; β)sweet cherry = 388.2879 − 1.1342n − 18.8506A−
−32.0578a + 0.0163na + 0.3677Aα + 0.0009n2 + 1.7161α2 + 0.0535nA

(11)

F(n; A; β)plum cherry = 1385.645 − 6.3663n + 9.009A−
−16.2298α + 0.0067n2 − 2.034A2 + 0.413α2 + 0.0565nA + 0.0348nα

(12)

F(n; A; β)apricot = −253.267 + 0.9114n + 7.3088A−
−5.6395α − 0.0008n2 − 0.4622A2 + 0.1823α2 + 0.4855aA

(13)

F(n; A; β)almonds = 909.1113 − 3.883n − 26.337A−
−7.5121α + 0.00503n2 + 1.335A2 + 0.4325α2 − 0.0212na + 1.1422Aα

(14)

The calculations for determining the optimum values of the optimization param-
eters according to Equations (10)–(14) were performed using the Mathematica-5 com-
puter software and MathCad software. The response surfaces were constructed, their
appearance was determined, and two-dimensional sections were analyzed according to the
variation factors [31].

Analyzing the response surfaces, we determined the optimal values of parameters
and modes of laboratory installation for the calibration of fruit bones, which are shown
in Table 4.

The clogging process of sieve openings has been estimated. The coefficient of efficiency
of the live section G—the ratio of the number of free of stuck bones to the total number of
openings—has been taken as an indicator of the quality of the cleaning operation [28].

The cleaners of the type under consideration had a reflective surface made of rods
with a diameter of d0 = 3 mm in increments of t = 23 mm, and were divided into cells
with dimensions of 125 × 209 mm, which contained 3–4 rubber balls with a diameter of
D = 33 mm.
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Table 4. Optimal parameters and operating modes laboratory installation for the calibration of
fruit bones.

Surface
Support

n, fluct/min A, mm β

Cherry 440 5 7

Sweet Cherry 420 5 7

Cherry Plum 440 5 4

Apricot 400 7 6

Almond 400 6 7

As a result of oscillations of the unit sieves, part of the ball periodically moves in the
space under the sieve. Moreover, the movement of the ball is random due to the influence
of a large number of factors.

It was established that the angle of inclination of the sieves has a negligible effect
on the clogging of the holes, so it was not considered in the research. The frequency of
oscillations of the sieves part has a significant effect on the coefficient of efficiency of the
live section: when it increases, there is a decrease in the number of clogged holes. To a
greater extent, the amplitude of the vibrations of the grating part affects the coefficient
of efficiency of the live section: the larger it is, the fewer stuck seeds there are. However,
if these indicators exceed the received optimal operating modes of the installation, the
required separation quality is not ensured.

It has been defined that when calibrating the bones of all fruit crops, almost the same
tendency towards the presence of clogged openings existed. In this case, the coefficient
of effectiveness of live cross-sections for all fruit crops ranged from G = 0.87–0.95. This
indicates that the combination of theoretically determined geometric parameters of ball
purifiers with the parameters of the operating mode of the installation (n, A, β) provides
the desired quality of the process of bone separation into fractions.

To confirm the data obtained as a result of mathematical planning of the experiment,
validation experiments with respect to mathematical models were carried out.

We studied the effectiveness of the influence of the obtained constructive and kinematic
parameters of the installation on the quality of calibration of lots of seeds of fruit stone
crops. The seeds of fruit stone crops were calibrated for three fractions at optimal operating
parameters of the installation. The obtained seed fractions were weighed; the measurement
results were written down in the laboratory observation journal. The criterion for the
effectiveness of the calibration process is the quality indicator of the separation of seeds
into fractions (1).

As a result, confidence intervals of rational parameters and operating modes of the
calibration process of cherry, sweet cherry, apricot, cherry plum and almond seeds were
obtained (Table 5).

During testing, the total calibration time of a batch of seeds was fixed. Thus, the
productivity of the installation was determined as the ratio of the total mass Mt of a batch
of seeds to the total time tt calibration:

Qi =
Mt

tt
. (15)

With the established parameters and regimes, which are listed in Table 4, a confir-
matory experiment was conducted to calibrate seed batches of fruit crops. The fractional
composition and performance of the installation were obtained (Table 6).
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Table 5. Rational parameters and modes of calibration of seeds of fruit stone crops.

Fruit Crops The Diameter of the
Opening of the Sieve d, mm

n,
fluct/min

A,
mm

βββ,
beg

Cherry Upper d = 6.5 MM
Lower d = 5.0 MM

435–445 5.0–5.5 6.5–7.0

Sweet Cherry Upper d = 8.0 MM
Lower d = 6.5 MM

415–425 5.0–5.5 6.5–7.0

Cherry Plum Upper d = 13.0 MM
Lower d = 11.0 MM

435–445 5.0–5.5 4.0–4.5

Apricot Upper d = 20.0 MM
Lower d = 15.0 MM

395–405 7.0–7.5 6.0–6.5

Almond Upper d = 22.0 MM
Lower d = 15.0 MM

395–405 5.5–6.0 6.5–7.0

Table 6. Fractional composition of seeds as a percentage of the mass and productivity of the unit for
calibration of fruit culture bones.

Fruit Crops

The Mass of Fraction, %

T
he

C
ri

te
ri

on
of

O
pt

im
iz

at
io

n,
%

Pr
od

uc
ti

vi
ty

,
kg

/h

Large Middle Small

Id
ea

l

Ex
pe

ri
m

en
ta

l

Id
ea

l

Ex
pe

ri
m

en
ta

l

Id
ea

l

Ex
pe

ri
m

en
ta

l
Cherry 7.55 5.90 77.65 7.55 5.90 77.65 7.55 5.90

Sweet Cherry 12.45 14.10 85.45 12.45 14.10 85.45 12.45 14.10

Cherry Plum 15.40 19.20 75.00 15.40 19.20 75.00 15.40 19.20

Apricot 7.25 10.60 88.35 7.25 10.60 88.35 7.25 10.60

Almond 14.85 17.40 83.15 14.85 17.40 83.15 14.85 17.40

The data in Table 6 show that the obtained optimal parameters and operating modes
of the installation allow obtaining the fractional composition of the seeds of fruit crops with
a weight deviation of 3 to 7%. The productivity of the laboratory unit was 150 kg/h.

Based on the agrotechnical requirements for calibrated seeds, a fraction consisting of
seeds of the same size with a high absolute weight was obtained.

4. Conclusions

It is suggested here to characterize the efficiency of ball purifiers by the coefficient of
efficiency of a live cross section, the value of which is the ratio of the number of openings
of the sieve free from stuck bones to the total number of openings at a certain point in time
during the calibration process.

A full-factorial experiment has been carried out, for which a rotatable Boks plan of
the second order has been chosen. The criterion of optimization was taken as an indicator
of the quality division of seeds into fractions homogenous in size. Oscillation frequency
n, oscillation amplitude A and the angle of inclination of the sieves α have been taken as
factors. The process of separating seeds into fractions most effectively reflects the minimum
value of the obtained criterion of optimization.

As a result of experimental studies of the process of calibration, a regression model
was obtained which establishes the relationship between the qualitative indicator of the
process and the main factors affecting it.

According to the results of experimental studies, the structural, technological and kine-
matic parameters that ensure the maximum quality of separation have been determined:
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− Cherry: n = 440 fluct/min, A = 5.0 mm; α = 7 deg;
− Sweet cherry: n = 420 fluct/min, A = 5.0 mm; α = 7 deg;
− Cherry plum: n = 440 fluct/min, A = 5.0 mm; α = 4 deg;
− Apricot: n = 400 fluct/min, A = 7.0 mm; α = 6 deg;
− Almond: n = 400 fluct/min, A = 6.0 mm; α = 7 deg.

Calibration of batches of seeds at the specified parameters of the installation allows
obtaining fractions, homogeneous in size, of the bones of fruit crops with a mass deviation
of up to 7%. This corresponds to the specified accuracy of the received data and ensures a
high-quality flow of the calibration process. The coefficient of efficiency of the live cross-
section G of the sieve in the process of operation of the unit for all fruit crops is within
0.87 to 0.95.
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