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DETERMINATION OF THE NATURAL FREQUENCIES OF AN ELLIPTIC SHELL  
OF CONSTANT THICKNESS BY THE FINITE-ELEMENT METHOD 

V. D. Budak,1 A. Ya. Grigorenko,2 M. Yu. Borisenko,1  and  E. V. Boichuk1 UDC 539.3 

We study natural vibrations of a thin isotropic elliptic shell of constant thickness by the finite-element 
method realized with the use of the high-performance FEMAR software developed for the engineering 
analyses.  The comparative analysis of the numerical results and experimental data is carried out. 

Statement of the Problem 

Noncircular cylindrical shells are extensively used in various fields of engineering.  For the safe operation 
of these structures, it is necessary to know the conditions of strength and reliability and, in particular, to know 
the frequencies and the modes of natural vibrations in order to avoid the resonance frequencies, which may lead 
to the fracture of the entire structure.  Hence, the reliable methods aimed at the numerical and experimental de-
termination of the dynamic characteristics of these structures become especially important. 

In the present work, we study the natural vibrations of a cantilevered fixed elliptic cylindrical shell of con-
stant thickness.  We note that number of works devoted to the problems of natural vibrations of noncircular cy-
lindrical shells is quite small.  In [2, 3, 9], the natural vibrations of elements of the shell structures and, in partic-
ular, of noncircular cylindrical shells, were studied by using numerical methods.  The natural frequencies and 
the modes of vibration were also determined by the experimental methods.  As one of these methods, we can 
mention the method of holographic interferometry allowing one to observe and measure the resonance frequen-
cies and modes of vibration in the visible part of the analyzed surface with high accuracy and in real time [1, 7].  
The analysis of the above-mentioned works enables us to conclude that there is no common viewpoint concern-
ing the application of various approaches to the solution of the indicated class of problems. 

The dynamics of shell structures is most often modeled within the framework of the classical Kirchhoff–
Love theory with the use of numerical methods [4–6].  In the cases where the thickness varies or the shape of the 
middle surface is arbitrary, the displacements of points of these shells are described by a system of partial differ-
ential equations with variable coefficients.  In this case, the variables cannot be separated with the help of Fouri-
er series in one of the coordinate directions and the solution of the problems of natural vibrations of shells of 
variable thickness or with an arbitrary shape of the middle surface is accompanied by serious difficulties of the 
computational character. 

At present, the so-called Computer-Aided Engineering (CAE) systems are extensively used for the solution 
of the problems of mechanics.  These systems enable us to perform the numerical analyses of structures of any 
shape due to the application of the finite-element method, allow the user to estimate the behavior of the comput-
erized model of a structure under the actual operating conditions, and to check the serviceability of the structure 
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without significant losses of time and assets.  As one of systems of this sort, we can mention a system based on 
an FEMAP pre- and post-processor equipped with an NX NASTRAN software module for the implementation 
of the engineering analyses by the finite-element method [8]. 

The aim of the present work is to study the natural vibrations of an elastic isotropic cylindrical shell with el-
liptic cross section by using the FEMAP program and to compare the accumulated numerical results with the 
experimentally obtained values. 

Input Relations 

We consider the problem of natural frequencies and modes of vibration.  Under variable kinematic bounda-
ry conditions and in the absence of external actions, the dynamical equation takes the form 

  [M ]{q(t)} + [C]{ q(t)} + [K ]{q(t)} = 0 , (1) 

where  [M ]   is the matrix of masses of the structure,  [C]   is the matrix of coefficients of the forces of viscous 
damping,  [K ]   is the stiffness matrix,   {q}   is the vector of nodal displacements and the overdot and two over-
dots in this equation denote, respectively, the first and second derivatives of  q  with respect to time. 

In the absence of damping, Eq. (1) takes the form 

  [M ]{!!q(t)} + [K ]{q(t)} = 0 . (2) 

The solution of the matrix equation (2) is 

  {q(t)} = {A} cos (ωt + β) , (3) 

where   {A}   is the vector of amplitudes of the nodal displacements,  ω = 2πf   is the circular frequency, and  β   
is the phase of vibrations.  As a result of the direct substitution of (3) in (2) and the reduction by  cos (ωt + β) ,  
we get the following system of algebraic equations: 

 
 
−ω2[M ] + [K ]( ){A} = 0 . (4) 

In this system, the nonzero values of the components of   {A}   are possible only under the condition  

 det [[K ] − ω2[M ]] = 0 . (5) 

If the square matrices  [M ]   and  [K ]   are positive definite, which is, as a rule, true for the problem of line-
ar elasticity, then Eq. (5) has  N   nonnegative solutions (natural frequencies)  ω k   [ N   is the number of un-
knowns in system (4)].  Moreover, double solutions are possible. 

If condition (5) is satisfied, then one of Eqs. (4) is a consequence of the remaining equations.  Therefore, 
each frequency  ω k   corresponds to a certain ratio of the amplitudes   ̀ ki .  In other words, all amplitudes of the 
vector can be expressed via one of these amplitudes.  The ratios of the amplitudes   ̀ ki   specify the k th natural 
mode of vibrations. 
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Equations (4) imply that all degrees of freedom are characterized by a synchronous motion in the course of 
vibrations with the natural frequency  ω k .  Thus, the configuration of the structure does not change its basic 
form and we observe solely the variations of the amplitudes. 

If we have  N   values of natural frequencies  ω k ,  then the solution of system (2) can be sought in the form 
of a linear combination of  N   expressions (3): 

 
  
{q(t)} = {`k} cos (ω kt + βk )

k=1

N

∑ . (6) 

Thus, the time variations of the shape of a linear elastic structure are given as linear combinations of all its ei-
genshapes.  

Note that the values of components of the eigenvectors    {`k}   can be found to within a constant factor.  
Hence, they are usually normalized according to the rule  

   {Ak}
[M ]{Ak} = 1 . (7) 

It is proved that the eigenvectors    {`k}   are orthogonal with respect to the matrices  [M ]   and  [K ] ,  i.e., 

  {Ak}
[M ]{Am} = 0, {Ak}

[K ]{Am} = 0, k ≠ m . (8) 

We also note that, most often, it suffices to find only several smallest roots of Eq. (5) (denoted by  Nα ) and 
the other roots are not determined because the amplitudes of vibrations have relatively large values only for the 
lowest natural frequencies.  In other words, several first natural frequencies and modes of vibration are sufficient 
to get a satisfactory approximation to solution (6).  Several algorithms are developed for this purpose.  The best 
of these algorithms are realized in the NX Nastran software module [8]. 

Procedure of Solution 

With the help of the FEMAP program, we constructed the geometry of the shell in the form of a cylindrical 
surface with elliptic cross section of the following sizes: height  h = 120mm, the major semiaxis a = 51.8mm,  
and the minor semiaxis  b = 37.295 mm.   

The parameters of modeling were chosen in correspondence with the shape and sizes of the shell for which 
the natural frequencies and the modes of vibration were studied by the method of holographic interferome-
try (Fig. 1).  Shell 1 was manufactured by turning together with the massive body 2 in order to realize a rigid 
fastening along the contour in the course of experiments.  Since the method of holographic interferometry re-
veals the absence of displacements of the baluster, it is reasonable to model the shell in calculations performed 
with the help of FEMAP as cantilever fastened along one of the contours.  

The shell was made of 40Kh steel with the following parameters:  Young’s modulus  E = 214GPa,  Pois-
son’s ratio  ν = 0.26 ,  and density  ρ = 7820 kg/m3.  The partition was realized by linear quadrangular  plate-
elements 1mm × 1mm in size with constant thickness d = 2 mm and contained 33, 396  nodes and 33,120  ele-
ments (Fig. 2).  The fastening of cantilever was realized along the lower contour of the shell. 
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Fig. 1 

 

Fig. 2 

Further, we performed the analysis of frequencies and modes of natural vibrations with the help of the NX 
NASTRAN software module.  

For the sake of comparison, the shell was also specified as a bulky body with partition into solid-elements, 
which had absolutely no influence on the frequencies and modes of vibration.  

We also performed the experimental investigations of the analyzed object on the base of the educational and 
scientific Laboratory of Holographic Methods at the Chair of Mathematics and Mechanics of the Sukhomlinskii 
Nikolaev National University.  To perform the experiments and observe the interferograms of the excited shell 
in real time, we assembled a special optical scheme [1].  The shell made of high-alloyed steel with the same 
characteristics as the characteristics of the shell used for numerical modeling was manufactured by turning on 
a lathe equipped with the CNC. 
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Fig. 3 

Table 1 

m  n  fexp , Hz ftheor , Hz ε , % 

1   4 1723 1712 0.64 

1   6 2306 2161 6.29 

1   8 4097 3860 5.78 

1 10 6519 6154 5.60 

1 12 9493 8978 5.43 

2   6 4782 4498 5.94 

2   8 5597 4911 12.26 

Analysis of the Results 

The proposed method was used to study the spectrum of resonance frequencies and modes of vibration for a 
cantilever fastened isotropic shell of constant thickness.  For comparison, the natural frequencies of vibrations 
were also found experimentally.  The resonance frequencies are presented in the form of a histogram in Fig. 3 
and in Table 1, where  m   is the number of nodes along the generatrix and  n   is the number of nodes along the 
circumferential coordinate.  The modes of vibration at some frequencies are shown in Fig. 4 for two different 
directions.  In this case, the displacements of points of the shell are displayed with tenfold magnification for the 
purposes of visualization.  
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 (a) (b) 

Mode 1:  m = 1 ,  n = 4 ,  f = 1712 Hz. 

   

 (a) (b) 

Mode 3:  m = 1 ,  n = 6 ,  f = 2161Hz. 

   

 (a) (b) 

Mode 6:  m = 1 ,  n = 8 ,  f = 3860 Hz. 
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 (a) (b) 

Mode 13:  m = 1 ,  n = 10 ,  f = 6154 Hz. 

   

 (a) (b) 

Mode 25:  m = 1 ,  n = 12 ,  f = 8978 Hz. 

   

 (a) (b) 

Mode 15:  m = 2 ,  n = 4 ,  f = 6169 Hz. 
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 (a) (b) 

Mode 9:  m = 2 ,  n = 6 ,  f = 4498 Hz. 

   

 (a)  (b)  

Mode 11:  m = 2 ,  n = 8 ,  f = 4911Hz. 

   

 (a)  (b)  

Mode 18:  m = 2 ,  n = 10 ,  f = 7099 Hz. 
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 (a)  (b)  

Mode 29:  m = 2 ,  n = 12 ,  f = 9772 Hz. 

    

 (a)  (b) 

Mode 8:  m = 1 ,  n = 6   (bending), Mode 17:  m = 1 ,  n = 0   (breathing), 
f = 4104 Hz. f = 6712 Hz. 

Fig. 4 

The study performed with the help of the FEMAP program was realized for 60 modes within the range of 
up to 17 кHz.  The analysis of the results reveal the repetition of the modes with symmetry breaking relative to 
the minor semiaxis for close frequencies.  This was especially well visible for the modes with the number of 
nodes along the generatrix  m = 1  (Fig. 5). 

  CONCLUSIONS  

The procedure of modeling of the shell cantilever fastened along one of the contours of its cylindrical sur-
face with elliptic cross section fairly reliably reflects the actual conditions of the experiment. 

The experimental frequencies and the frequencies computed with the help of the NASTRAN module differ 
from by at most 13 %.  For some frequencies, the difference is less than 1 %. 
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 (a)  (b)  

Mode 1:  f = 1712 Hz. Mode 2:  f = 1761Hz. 

   

 (a)  (b)  

Mode 3:  f = 2161 Hz. Mode 4:  f = 2167 Hz. 

   

 (a)  (b)  

Mode 6:  f = 3860 Hz. Mode 7:  f = 3863Hz. 

Fig. 5 
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Unlike the experimental method, the numerical modeling allows us to get the complete spectrum of the 
modes of vibration.  Indeed, in the experiments, the results depend on the conditions of excitation, accuracy of 
measuring devices, and the quality of the experiment. 

The fact that the experimental and theoretical values of frequencies are in fairly good agreement confirms 
high reliability of both methods of investigations. 

REFERENCES 

 1. A. Ya. Grigorenko, Yu. G. Zolotoi, A. P. Prigoda, I. Yu. Zhuk, V. V. Khorishko, and A. V. Ovcharenko,  “Experimental investiga-
tion of natural vibrations of a thick-walled cylindrical shell by the method of holographic interferometry,” Mat. Metody Fiz.-Mekh. 
Polya, 55, No. 3, 93–98 (2012);  English translation: J. Math. Sci., 194, No. 3, 239–244 (2013). 

 2. A. Ya. Grigorenko, S. V. Puzyrev, and E. A. Volchek,  “Investigation of free vibrations of noncircular cylindrical shells by the 
spline-collocation method,” Mat. Metody Fiz.-Mekh. Polya, 54, No. 3, 60–69 (2011);  English translation: J. Math. Sci., 185, No. 6, 
824–836 (2012). 

 3. Ya. M. Grigorenko, E. I. Bespalova, A. B. Kitaigorodskii, and A. I. Shinkar’,  Natural Vibrations of Elements of the Shell Structures 
[in Russian], Naukova Dumka, Kiev (1986). 

 4. Ya. M. Grigorenko and A. T. Vasilenko, Theory of Shells with Variable Stiffness, in: Methods for Numerical Analyses of the Shells 
[in Russian], Vol. 4, Naukova Dumka, Kiev (1981). 

 5. Ya. M. Grigorenko and A. P. Mukoed,  Solving of Nonlinear Problems of the Theory of Shells on Computers [in Russian], Vyshcha 
Shkola, Kiev (1983). 

 6. Ya. M. Grigorenko and N. D. Pankratova,  Computational Methods in the Problems of Applied Mathematics [in Ukrainian], Lybid’, 
Kiev (1995). 

 7. R. Kh. Makaeva, A. M. Tsareva, and A. Kh. Karimov,  ”Determination of the vibrational characteristics of disks with constant thick-
ness by the experimental-numerical method with the use of holographic interferometry,” in: Holography in Russia and Abroad. Sci-
ence and Practice. Proc. of the Fourth Internat. Sci.-Pract. Conf. [in Russian], Moscow (2007), pp. 116–118. 

 8. K. N. Rudakov,  FEMAP 10.2.0. Geometric and Finite-Element Modeling of Structures [in Russian], “KPI” National Technical Uni-
versity, Kiev (2011). 

 9. I. H. Sabih and E. J. Boisvert,  “Vibration of elliptic cylindrical shells: higher order shell theory,” J. Acoust. Soc. Amer., 128, No. 3, 
1063–1072 (2010).  


	Abstract
	Statement of the Problem
	Input Relations
	Procedure of Solution
	Analysis of the Results
	CONCLUSIONS
	REFERENCES

