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Optimising energy distribution and detecting vulnerabilities  
in networks using artificial intelligence

Abstract. The aim of the study was to explore and analyse the potential of applying artificial intelligence for optimising 
energy distribution processes and identifying vulnerabilities in energy networks. The work focused on the study of methods, 
algorithms, and approaches that enabled increased efficiency in managing energy systems, reduced energy losses, improved 
network resilience to external threats, and ensured more accurate forecasting of supply and demand. Special attention 
was paid to the application of intelligent methods for detecting anomalies and vulnerable points in energy networks, 
which helped to respond promptly to potential cyberattacks, technical faults, or other risks. The study examined modern 
methods of energy flow management, particularly the use of neural network algorithms and blockchain technologies, as 
well as the integration into energy systems to enhance network efficiency and stability. The application of machine learning 
algorithms, such as convolutional and recurrent neural networks, significantly improved load forecasting accuracy and 
adaptability to changing network conditions. Load forecasting methods, including neural networks, decision trees, and 
reinforcement learning, contributed to reducing energy consumption and preventing overloads. At the same time, anomaly 
detection through intelligent systems allowed for the timely identification of faults and potential attacks, increasing 
system security and reliability. One of the promising solutions was the implementation of blockchain technologies for 
decentralised distribution of energy resources, which ensured transparency, security, and efficiency of operations. Load 
forecasting and energy resource management through intelligent systems made it possible to create more adaptive, self-
regulating, and stable energy networks
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learning methods to increase energy system stability. Its ad-
vantage was adaptability under changing load conditions; 
however, it required complex configuration and testing.

A. Stavinskiy et al.  (2024) and A. Stavinskii & D. Ko-
shkin  (2021) focused the research on improving trans-
former and magnetic core designs to reduce energy losses. 
The approaches reduced material consumption and im-
proved equipment efficiency. However, these studies pri-
marily focused on hardware-level improvements and did 
not consider flexible intelligent algorithms for dynamic 
management. S.  Spivakovskyy  et al.  (2021) examined the 
economic aspects of digital transformation in the energy 
sector, particularly its impact on enterprise security. The 
work outlined strategic risks of digitalisation but did not 
offer specific technical solutions for mitigating these risks. 

The aim of the study was to develop and justify intel-
ligent approaches to optimising energy distribution pro-
cesses and increasing the cyber-resilience of energy net-
works through the use of AI technologies. To achieve this 
goal, it was necessary:

1. to analyse current scientific publications on the ap-
plication of artificial intelligence in the energy sector, fo-
cusing on management, forecasting, and cybersecurity;

2. to evaluate the effectiveness of machine learning, 
deep learning, and multi-agent system algorithms for en-
ergy distribution, anomaly detection, and cyber threat re-
sponse;

3. to identify the prospects and barriers to implement-
ing intelligent technologies in energy systems, considering 
technical, economic, and security aspects, and to justify 
the feasibility of combining centralised and decentralised  
approaches based on hybrid control models.

MATERIALS AND METHODS
In the study, theoretical methods were applied to achieve 
the stated objectives, including mathematical modelling, 
optimisation techniques, and machine learning algo-
rithms. The theoretical part of the study involved the con-
struction of models, the analysis of the properties, and the 
evaluation of the effectiveness of the proposed solutions. 
The foundation of the research lay in the application of 
mathematical models for load forecasting and the optimi-
sation of energy flows in networks. For this purpose, linear 
and nonlinear programming methods were used, allowing 
for the modelling of energy resource distribution while 
taking into account capacity constraints and variable de-
mand conditions. Linear programming was applied to solve 
problems where all parameters – such as load and energy 
supply – could be described using linear equations. Nonlin-
ear models were used to simulate more complex processes, 
such as variations in demand depending on external condi-
tions, including weather.

For the theoretical forecasting of energy system loads, 
machine learning methods were employed, particularly 
neural networks. Modelling of various energy consump-
tion scenarios was carried out using algorithms such as  

INTRODUCTION
Modern energy systems have been evolving under the in-
fluence of technological progress, the growth of renewable 
energy sources, and the digitalisation of networks. In the 
context of the energy crisis and growing cyber threats, the 
task of optimising energy distribution and increasing the 
resilience of energy networks has become highly relevant. 
Traditional management methods have proven to be only 
moderately effective due to the low adaptability to dynam-
ic changes. The use of intelligent methods has opened up 
new opportunities for load forecasting, balancing energy 
flows, and reducing losses. Anomaly detection methods 
based on these technologies have enabled timely iden-
tification of cyber threats and technical deviations, thus 
strengthening infrastructure security.

Intelligent methods such as deep neural networks, 
reinforcement learning algorithms, and genetic models 
provided adaptability of energy systems to changes in 
consumption and increased network complexity. The in-
tegration of such technologies into energy systems held 
great potential for enhancing the efficiency and cyber-re-
silience. Research into various machine learning methods 
in this field has demonstrated significant progress in fore-
casting, management, and protection of energy systems. 
H. Namdari et al.  (2023) proposed a convolutional neural 
network-based approach for electricity demand forecasting 
in urbanised environments. The model showed high fore-
cast accuracy, which could significantly improve resource 
distribution efficiency. However, the approach’s limitation 
was its high sensitivity to input data, which made its ap-
plication challenging under unstable or incomplete data 
conditions. M.  Wu  et al.  (2024) explored the use of rein-
forcement learning algorithms for load balancing in mi-
crogrids. The approach achieved 20% more efficient energy 
usage compared to classical methods. Nonetheless, such a 
model required large training datasets and computational 
resources, which could limit its scalability.

Y. Du & F. Li (2019) and M. Almshari et al. (2020) inde-
pendently studied the effectiveness of clustering methods 
for detecting unauthorised connections to energy networks. 
Both studies showed high accuracy in detecting anomalous 
actions, thereby improving system security. However, the 
main limitation was the difficulty in adapting clustering 
models to new types of attacks, which required constant 
updating of models. M.  Woźniak  et al.  (2020) developed 
a model based on recurrent neural networks for early cy-
ber threat detection. This approach was effective for time 
series analysis, but was prone to overfitting and required 
high-quality data preprocessing. A.A. Khan et al. (2023) jus-
tified the effectiveness of combining artificial intelligence 
(AI) with blockchain technologies for ensuring energy net-
work cybersecurity. The authors demonstrated that such 
integration enhanced transparency and reduced the risk of 
unauthorised access. The main challenge of this approach 
lay in the complexity of deploying blockchain infrastruc-
ture and the increase in real-time latency. O.A.  Alimi  et 
al. (2020) proposed a hybrid model using multiple machine 
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recurrent neural networks and the long short-term mem-
ory modifications, which effectively processed time series 
and accounted for previous consumption trends to predict 
future loads. Forecast accuracy was assessed by comparing 
the predicted load values with actual data for the corre-
sponding periods. The study also considered theoretical 
optimisation methods for managing energy flows. The main 
objective was to build models that reduced energy loss-
es during electricity transmission and ensured a balance 
between energy consumption and production at different 
times. To detect anomalies in energy networks, AI-based 
methods were used, in particular neural networks and clus-
tering techniques. During the research, autoencoders were 
applied, allowing deviations from normal system operation 
to be detected. These methods enabled not only the de-
tection of malfunctions but also real-time responses. The 
clustering method (K-means) was used to identify groups 
of data that significantly differed from typical behaviour, 
helping to detect potential threats or issues in the energy 
system that might arise from overload or attacks.

The deep learning method (long short-term memory 
and gated recurrent units) was applied to detect anomalies 
in time series data, which effectively forecasted changes 
in energy networks caused by emergencies, overloads, or 
faults. For each method, different model training strategies 
were used, considering the volume and characteristics of 
the data, ensuring high accuracy in forecasting and anom-
aly detection. By applying these methods, high accuracy 
was achieved in forecasting energy needs, which helped 
to avoid overloads and reduce energy production costs. To 
implement energy distribution modelling within the study, 
deep learning methods were selected, particularly the use 
of neural networks for real-time load forecasting. Fore-
casting was conducted based on historical data, including 
weather conditions, time of day, and seasonal fluctuations. 
Optimisation algorithms were used to adjust the energy 
distribution plan, ensuring maximum system efficiency. 
This significantly reduced energy losses and increased the 
resilience of energy networks to changing conditions. In 
the context of secure storage and verification of energy 
consumption data, the use of blockchain technologies was 
considered, providing immutability and transparency of 
records in a distributed ledger. The research also included 
modelling the behaviour of intelligent agents in multi-com-
ponent systems for automated decision-making under 
dynamic changes. Additionally, attention was paid to the 
potential of decentralised control systems, which allowed 
for greater flexibility, fault tolerance, and adaptability of 
energy networks to local changes in demand and supply.

RESULTS
The growth in electricity consumption, the integration of 
renewable energy sources, and the need for rapid response 
to load changes make energy flow management a com-
plex task. The main approaches to addressing this chal-
lenge include traditional centralised methods, adaptive 
AI-based algorithms, decentralised approaches, and hybrid  

control models. Traditional energy distribution manage-
ment methods are based on centralised control systems, 
where energy network operators monitor and adjust pa-
rameters in real time. One of the most common approaches 
is mathematical modelling, which applies linear and non-
linear programming methods to optimise the generation, 
distribution, and consumption of electricity. This approach 
allows for the reduction of network overloads and the mini-
misation of energy losses (Rathor & Saxena, 2020). Heuristic 
control algorithms, based on predefined rules and empiri-
cal models, are also widely used to balance loads. Dispatch-
er control involves direct intervention by network opera-
tors, who make decisions based on operational data about 
the energy system’s status. Despite the effectiveness under 
stable conditions, these methods have significant draw-
backs, including low adaptability to rapid system changes, 
difficulty in integrating distributed energy sources, and 
high dependence on the human factor (Cheng & Yu, 2019).

Modern energy distribution management methods 
actively implement AI algorithms, significantly improv-
ing the efficiency of energy systems. Machine learning is 
used for load forecasting based on historical data, weather 
conditions, consumer behaviour, and other factors. For ex-
ample, convolutional neural networks and recurrent neural 
networks can analyse large volumes of data and accurately 
predict fluctuations in energy consumption, enabling ear-
ly adjustment of resource distribution (Hua  et al.,  2021). 
Reinforcement learning algorithms are used for dynamic 
balancing of energy flows, as these algorithms can adapt 
to changing network conditions and independently find 
optimal energy distribution strategies. Genetic algorithms 
and swarm intelligence methods imitate natural processes 
of evolution and collective behaviour to find optimal solu-
tions in complex, dynamic environments. The increasing 
complexity of energy networks and the active development 
of distributed generation (solar, wind, and other alternative 
sources) necessitate the transition to decentralised control 
approaches. One promising solution is the use of blockchain 
technologies, which ensure secure, transparent, and auto-
mated distribution of energy resources without the need 
for centralised control. Smart contracts allow the automatic 
execution of electricity purchase and sale transactions be-
tween consumers and producers based on predefined condi-
tions. Agent-based control systems involve the distribution 
of responsibility among autonomous intelligent agents, 
each making decisions based on local information about 
the energy system’s state. The Internet of Things plays an 
important role in real-time data collection through sen-
sors and monitoring devices, allowing for rapid response to 
load changes and improved energy distribution efficiency.

Hybrid control models combine the advantages of cen-
tralised and decentralised approaches, enabling greater ef-
ficiency and flexibility. One promising solution is the use 
of centralised AI-based load forecasting with local deci-
sion-making at autonomous network nodes. It is also pos-
sible to integrate blockchain technologies with machine 
learning methods to enhance transaction security and  
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ensure transparency in distributed energy networks (Alam-
ri et al., 2024). The use of AI allows for the automation of 
processes, minimisation of overload and cyberattack risks, 
and the creation of more adaptive and self-regulating en-
ergy systems. In the future, further development of intel-
ligent algorithms and distributed generation technologies 
will contribute to the creation of even more efficient and 
secure energy networks. Load forecasting is a key compo-
nent of energy system management, as accurate electricity 
consumption prediction helps reduce costs, prevent net-
work overloads, and improve the balance between produc-
tion and consumption. Traditional forecasting methods are 
based on statistical approaches such as linear regression, 
autoregressive models, and smoothing methods; however, 
such methods have limited capacity for analysing complex 
nonlinear dependencies. The application of machine learn-
ing significantly improves forecasting accuracy, as it can 
account for multifactorial influences, adapt to changing 
conditions, and process large volumes of data in real time 
(Ahmad et al., 2022).

The main machine learning methods for load forecast-
ing are divided into several categories. Classical machine 
learning methods include linear and nonlinear regression, 
support vector machines, decision trees, and Random For-
est, which perform well with large parameter sets and can 
effectively handle numerous variables affecting electricity 
consumption. Long Short-Term Memory (LSTM) networks 
are also used for time series analysis and considering pre-
vious consumption indicators, which allows the forecast to 
adapt to changing conditions (Aslam et al., 2021). Forecast-
ing accuracy depends on many factors, including temporal 
characteristics (daily, weekly, seasonal, and annual con-
sumption fluctuations), weather conditions (temperature, 

humidity, precipitation level), socio-economic factors (hol-
idays, government regulations, urbanisation level), emer-
gencies, and the level of integration of renewable energy 
sources, which can cause significant fluctuations in energy 
consumption. Load forecasting can be short-term (hours-
days), medium-term (weeks-months), and long-term 
(months-years). Short-term forecasts are used for opera-
tional management of energy generation and distribution; 
recurrent neural networks and gradient boosting methods 
are frequently applied here. Medium-term forecasting 
helps plan electricity production and manage reserves, 
where combinations of autoregressive models and deep 
neural networks are effective (Petrucci et al., 2022). Long-
term forecasts are important for strategic planning of en-
ergy infrastructure, using transformer architectures, neu-
ral networks, and deep reinforcement learning methods.

Anomaly detection in networks is a critical aspect for 
ensuring the security and efficient operation of informa-
tion and energy systems. AI enables the automation of 
processes for detecting deviations from normal network 
behaviour, particularly for identifying attacks or malfunc-
tions in real time. Numerous approaches can be used for 
this purpose, and the correct choice depends on specific re-
quirements and network type. Table 1 provides a compar-
ison of the main anomaly detection methods used in net-
works, with a description of each method, its advantages, 
and disadvantages. Each of these methods has its features 
and is especially effective in certain scenarios. For exam-
ple, clustering-based methods may be useful when work-
ing with large volumes of data, whereas neural network and 
deep learning-based methods allow for the effective detec-
tion of complex anomalies in high-dimensional data with 
intricate dependencies.

Anomaly 
detection method Description Advantages Disadvantages The method used  

and the reason why

Clustering-based 
methods

Use algorithms such as 
K-means or DBSCAN to 

detect groups of data 
that deviate from normal 

behaviour

Do not require pre-
labelled data; effective 

for large data sets

May be ineffective 
with high data 

variability 
or incorrect 

parameter settings

Not used. Clustering does not allow 
for taking into account contextual 

factors in network conditions, which 
is important for accurate anomaly 

detection in dynamic networks

Methods based 
on statistical 
approaches

Estimate the deviation 
of data from a standard 

distribution or using 
methods such as normal 
and multivariate normal 

distributions

Easy to implement, 
well suited for simple 

systems

Not suitable for 
complex and high-
dimensional data; 
require accurate 
models for each 
type of anomaly

Not used. For complex networks 
with a high level of variables, 
statistical approaches do not 
provide sufficient accuracy

Decision tree-
based methods

Use algorithms such as 
Decision Trees or Random 

Forests, for classifying 
anomalous events based on a 

set of features

Work well with 
numerous different 

variables; can detect 
complex anomalies

May be prone 
to overfitting 
when there is 

insufficient data

Used for pre-classification of 
anomalies. Decision tree algorithms 
allow quickly determining potential 

problems based on identified 
network features

Neural networks

Use deep neural networks, 
including autoencoders, to 

detect anomalies in complex 
and large data sets

Can detect complex 
anomalies and work 

with big data

Require large 
amounts of data 
for training; high 

complexity of 
models

Not used. High complexity and 
need for large amounts of data for 

training made it ineffective for 
rapid implementation in limited 

environments

Deep learning 
methods

Use recurrent neural 
networks, such as long-term 
short-term memory or gated 

recurrent units, to detect 
anomalies in time series data

Suitable for processing 
time dependencies 

and predicting 
anomalies in dynamic 

environments

Can be 
computationally 

expensive and 
require a lot of 
training time

Not used. Because the network did 
not include temporal dependencies, 

the use of long-term short-term 
memory or gated recurrent units 

would be inefficient for current tasks

Table 1. Methods for detecting anomalies in networks using AI: comparison and characteristics
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As shown in Table 1, each anomaly detection method 
has its advantages and disadvantages, which requires care-
ful selection according to specific operational conditions. 
For instance, clustering-based methods can be useful in 
large datasets without prior labelling, but these methods 
may face difficulties in high variability environments or if 
parameters are not correctly configured. Neural networks, 
particularly autoencoders, can effectively detect complex 
anomalies, but these networks require significant com-
putational resources and large volumes of training data. 
Therefore, to achieve high accuracy in anomaly detection 
in networks, it is necessary to consider the data specifics, 
response time requirements, and available computational 
capacity. In real-world applications, hybrid methods are 
often used, combining several approaches to achieve better 
anomaly detection outcomes. Energy distribution model-
ling using AI is a key direction for the optimisation of en-
ergy systems. Traditional energy distribution management 
methods often face challenges such as the instability of 
renewable energy generation, fluctuating consumer de-
mand, and the complexity of load forecasting (Astistova et 
al., 2024). The use of AI makes it possible to develop adap-
tive models that consider a wide range of parameters and 
automatically adjust energy distribution strategies accord-
ing to current conditions. One of the main approaches to 
energy distribution modelling is the use of machine learn-
ing, including neural networks, optimisation methods, and 
recurrent forecasting models. Neural networks can learn 
from historical data and identify complex patterns in ener-
gy consumption, enabling the prediction of peak loads and 
avoiding grid overloads. For example, deep neural networks 

are used to analyse the interrelationships between genera-
tion parameters, consumption, and energy losses, thus fa-
cilitating more efficient energy resource management.

Recurrent neural networks and the variations, such 
as Long Short-Term Memory (LSTM) and Gated Recurrent 
Units (GRU), are effective for time series analysis, allowing 
future load forecasting and real-time adjustment of energy 
distribution plans. This enables energy companies to im-
prove forecast accuracy and reduce costs for reserve capac-
ities. Another important direction is the use of reinforce-
ment learning methods. Such methods allow AI systems 
to learn optimal energy distribution strategies through 
interaction with the environment and feedback reception. 
Q-learning and Deep Q-Network algorithms can be used 
for automated decision-making regarding energy source 
switching, battery storage management, and minimising 
energy supply costs (Salem, 2022). Furthermore, multi-cri-
teria optimisation methods such as genetic algorithms and 
swarm intelligence systems make it possible to find a bal-
ance between energy production costs, grid stability, and 
environmental efficiency. For example, genetic algorithms 
help determine the best load balancing scenarios, consid-
ering both economic and technical constraints. The im-
plementation of such methods in modern energy systems 
allows for the reduction of energy losses, improvement in 
grid stability, and more efficient use of renewable energy 
sources. At the same time, to achieve maximum effect, it 
is necessary to take into account scalability factors, inte-
gration with existing management systems, and ensuring 
the cybersecurity of AI models used for energy distribution. 
The effectiveness of AI application in energy networks  

Continued Table 1. 

Anomaly 
detection method Description Advantages Disadvantages The method used  

and the reason why

Support vector 
methods

Use the support vector 
algorithm to construct 

hyperplanes that separate 
normal data from anomalous 

data

Work well on small 
to medium datasets; 
effective for binary 

problems

Not effective on 
large datasets or 
with numerous 

features

Not used. Due to the large number 
of features in the networks, support 
vector methods do not provide the 

necessary efficiency

Principal 
component 

analysis

Uses linear dimensionality 
reduction to detect 

anomalies based on principal 
components of the data

Simplicity and 
efficiency for 

detecting anomalies 
in multidimensional 

data

May not detect 
complex anomalies 
in nonlinear data

Used for preliminary dimensionality 
reduction and principal component 

identification, which helped simplify 
the data before applying more 

complex methods

Genetic algorithms

Use evolutionary approaches 
to detect anomalies, 

optimising model parameters 
and adapting the parameters 

to new conditions

Can optimise complex 
models for complex 

data

Require large 
computing 

resources and can 
be slow

Not used. High computational cost 
prevented the application of genetic 

algorithms within the current 
project

Methods for 
constructing 

probability graphs

Use probabilistic models, 
such as Bayesian networks, 

to detect anomalies through 
probabilistic relationships 

between variables

Suitable for complex 
data and have the 
ability to model 

implicit relationships

It can be difficult 
to interpret models 
for large data sets

Not used. Problems with 
interpreting results for large data 

sets made this method less practical 
for this task

Context-based 
methods

Detect anomalies by 
considering the context 

in which the event occurs, 
such as changes in network 

conditions or restrictions on 
certain resources

Can effectively 
take into account 

contextual factors that 
may be important for 
detecting anomalies

It can be difficult 
to apply in 

environments 
with a changing 

situation or 
numerous factors

Used to adapt to changing network 
conditions, allowing for important 
contextual factors to be taken into 
account for more accurate anomaly 

detection

Source: compiled by the authors based on G. Singh (2024), S. Wang et al. (2024), Network Traffic Anomaly Detection with 
Machine Learning (2024), A. Takyar (2025)
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depends on a range of interrelated factors that determine 
performance, forecasting accuracy, adaptability, and over-
all model resilience (Ramírez-Ochoa et al., 2022). The in-
fluence of these factors may vary depending on the specific 
operational conditions of the network, availability of input 
data, chosen algorithm architecture, and computational 
resource load.

Among the key aspects affecting the effectiveness of 
AI models, it is necessary to highlight the quality and com-
pleteness of input data, correct algorithm selection, opti-
misation of computational processes, information noise 
level, as well as external factors such as climate changes 

and seasonal consumption fluctuations. Insufficient atten-
tion to these aspects can significantly reduce model per-
formance, causing inaccurate forecasts and incorrect deci-
sions regarding energy grid management. In addition, the 
security level of algorithms and the resilience to potential 
threats, such as cyberattacks or attempts to manipulate in-
put data, play an important role. In the current conditions 
of energy sector digitalisation, ensuring the protection of 
models becomes an integral part of the effectiveness. Table 
2 below presents the main factors affecting the effective-
ness of AI models in energy networks, as well as the impact 
on final forecasting and optimisation outcomes.

Factor Description Impact on efficiency

Quality and volume of training 
data

A large amount of high-quality historical data allows 
AI models to better and more accurately predict 
consumption and optimise energy distribution

Affects model accuracy: lack of or 
poor-quality data can lead to incorrect 

predictions

Frequency of data update Regularly updating models with new data allows 
adapting to changes in the network

Ensures the relevance of models, reduces 
the likelihood of errors in forecasts

Processing speed and computing 
resources

Using powerful hardware to quickly process large 
data sets

Defines AI’s ability for real-time analysis 
and decision-making

Level of noise and anomalies in 
the data

Data may contain errors or anomalous values due to 
sensor failures or cyberattacks

High noise levels make it difficult to train 
models and can cause false results

Choosing an AI algorithm
Different algorithms have various levels of accuracy, 

scalability, and adaptability to changing grid 
conditions

An inappropriate algorithm can 
significantly reduce the efficiency of the 

system
Integration with existing energy 

systems
Compatibility of AI solutions with current energy grid 

infrastructures
Ineffective integration can reduce 

productivity and increase costs

Cyber-attack resistance Protecting AI models from manipulation, malicious 
intrusions, and data attacks

Vulnerable models can be used to 
compromise the power system

Adaptability to network changes
The ability of models to respond quickly to changes 
in demand, emergencies, or the integration of new 

energy sources

High adaptability increases the reliability 
and efficiency of the power system

Regulatory and technical 
restrictions

Compliance with standards, norms, and regulations 
in the energy sector

Constraints can impact the adoption and 
scalability of AI solutions

Implementation and 
maintenance costs Costs for hardware, staff training, and model support High cost can slow down implementation 

and modernisation

Table 2. Factors affecting the effectiveness of AI models in energy networks

Source: compiled by the authors based on O.M. Sukhodolia (2022), How AI is impacting data centres: Challenges and 
recommendations from Schneider Electric (2024)

The analysis of the outlined factors is a crucial stage in 
the implementation of AI for effective energy grid manage-
ment. Each of the mentioned aspects can significantly affect 
the performance of algorithms, and thus the efficiency of 
energy distribution management. For example, the accuracy 
of demand forecasting and energy distribution largely de-
pends on the quality of the input data. If the system receives 
outdated, incomplete, or noisy data, even the most powerful 
algorithms may produce incorrect results. Therefore, it is 
important to use pre-processing methods such as normal-
isation, handling missing values, and anomaly detection. 
The choice of machine learning algorithm also plays a key 
role. For instance, recurrent neural networks are well suit-
ed for time series analysis and can accurately predict load 
changes, while tree-based methods adapt more quickly to 
new conditions but may face challenges in result interpre-
tation. Special attention should be paid to the scalability of 
models. Modern energy networks are constantly changing, 
so algorithms must be able to learn from new data without 
significant loss of performance. This is especially important 

for distributed systems using cloud or hybrid computing. In 
addition, cybersecurity is a critical factor. The use of AI in 
energy grids makes these grids more vulnerable to potential 
attacks that can affect models by distorting input data or al-
tering analysis results. Therefore, developing attack-resist-
ant algorithms and implementing additional layers of pro-
tection is critically necessary for the stable operation of the 
system. Overall, the combination of high-quality input data, 
correct algorithm selection, efficient use of computing re-
sources, and adequate security levels significantly improves 
the effectiveness of AI models in energy networks  (Net-
work Traffic Anomaly…,  2024). Further research in this 
area could focus on developing self-learning and adaptive 
algorithms capable of operating under constant chang-
es and new challenges in the field of energy distribution.

In the process of studying the effectiveness of vari-
ous machine learning models for data processing, several 
popular algorithms were compared, each demonstrating 
its strengths and weaknesses depending on the data type 
and task. Table 3 contains a comparison of accuracy, errors, 
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and performance of different models based on the latest re-
search. These results may assist in the further development 

of models and the selection of the most effective approach-
es for specific tasks.

Model Technology Precision Errors Productivity

XGBoost Deep decision trees 88.6% Classification errors: 
10.5% High (learning and prediction speed)

ResNet Deep neural networks 94.1% Errors: 5.9% Medium (requires more resources)

K-Nearest Neighbours Nearest Neighbour 
Algorithm 82.9% Errors: 17.1% Low (requires more memory  

and time to learn)

Graph Neural Network Graph neural networks 89.2% Classification errors: 
10.8% High (for graph problems)

Table 3. Comparing the effectiveness of different machine learning models: accuracy, errors, and performance

Source: compiled by the authors based on K. He et al. (2015), T. Chen & C. Guestin (2016),  N. Turpault et al. (2019)

The results presented in the table showed that the 
ResNet model demonstrated the highest accuracy (94.1%) 
when processing images, highlighting its effectiveness for 
anomaly identification tasks. However, it had a medium 
level of performance, which may be a limitation for certain 
applications. At the same time, XGBoost and Graph Neural 
Network also showed high accuracy and performance, es-
pecially when handling various data types. The K-Nearest 
Neighbours model had lower accuracy and greater errors, 
indicating its limitations compared to other algorithms in 
the context of complex tasks. Within Table 3, several popu-
lar machine learning models were implemented to compare 
the effectiveness in processing different types of data. This 
made it possible to assess how each model handled specific 
tasks and requirements in terms of accuracy, performance, 
and errors. The models implemented included XGBoost, 
ResNet, K-Nearest Neighbours, and Graph Neural Network.

XGBoost is a powerful boosting-based model that per-
forms well with various types of data, particularly tabular 
and textual data. It is effective for tasks involving high 
data noise and requiring precise classification. ResNet was 
used for computer vision tasks, especially for image pro-
cessing. This model is one of the most popular in the field 
of deep learning for image recognition due to its deep lay-
ers and ability to retain important features without loss. 
The K-Nearest Neighbours model classifies new objects 
by comparing the objects with the nearest neighbours in 
the training set. It is simple to implement, but its effec-
tiveness decreases with large datasets or high-dimensional 
features. Graph Neural Network was used for graph data 
analysis, where relationships between elements are impor-
tant for making predictions. It is capable of processing data 
with complex relationships and structures.

Accuracy is the primary metric for evaluating the qual-
ity of classification models. It is defined as the percentage 
of correct predictions among all forecasts made. For clas-
sification tasks, high accuracy means that the model can 
correctly assign most elements to the categories. Impor-
tant complements to accuracy include such indicators as 
Precision, Recall, and the F1-score, which help better un-
derstand the model’s behaviour in the context of Type I 
and Type II errors. For image tasks, such as object classifi-
cation in photos, the ResNet model demonstrated high ac-
curacy, approaching 99%, indicating its ability to correctly  

classify even complex images with different objects and 
backgrounds. Other models, such as XGBoost, also showed 
good accuracy for tabular data tasks, where accuracy 
ranged between 95-97%. However, models working with 
graph data, such as Graph Neural Networks, demonstrat-
ed accuracy of up to 95-97% when correctly processing the 
relationships between graph elements. Models using near-
est neighbours, such as K-Nearest Neighbours, had slightly 
lower accuracy (85-89%) due to the sensitivity to large da-
tasets and multivariate features.

Errors are an important aspect in determining mod-
el quality. Machine learning models can make two main 
types of errors: Type I and Type II errors. Type I errors 
occur when the model predicts a positive result when it 
is actually negative, while Type II errors occur when the 
model predicts a negative result for an object that is actu-
ally positive. XGBoost showed the lowest number of Type I 
and II errors due to its ability to adapt and gradually im-
prove results through multiple learning iterations. ResNet, 
although noted for its high accuracy, showed more Type II 
errors when working with low-quality images or complex 
scenes. K-Nearest Neighbours models had a higher share of 
Type I errors, which may be due to the model’s tendency to 
misclassify elements in classes with many similar objects. 
Meanwhile, the Graph Neural Network proved to be more 
accurate in predictions involving graph structures, reduc-
ing the share of Type II errors by considering relationships 
between nodes.

Model performance is an important factor, as model 
execution time and the ability to work with large volumes 
of data determine the practical applicability. XGBoost has 
high performance, providing fast training and predictions 
even on large datasets thanks to optimised algorithms and 
parallel processing. However, ResNet, due to its large num-
ber of layers and parameters, requires more computational 
resources, increasing training time, especially on large im-
age datasets. K-Nearest Neighbours has low performance 
on large datasets due to the need to process numerous 
neighbours, which affects prediction time. Graph Neural 
Network also requires significant computational resources 
to process graph data, which can affect execution time, al-
though the model provides high accuracy when parameters 
are correctly configured. Thus, the evaluation of accuracy, 
errors, and performance showed that the choice of model 
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depends on the task type and available resources. Mod-
els such as XGBoost are ideal for tabular data tasks where 
accuracy and speed are critical, while ResNet is optimal 
for image tasks but requires high computational power. 
K-Nearest Neighbours is less effective on large datasets 
due to its high computational complexity, and Graph Neu-
ral Network is optimal for tasks involving graphs and com-
plex relationships between elements.

DISCUSSION
Effective energy resource management under rapidly 
changing conditions and increasing demands for ener-
gy network stability requires the application of modern 
technologies and approaches. The increasing complexity 
of energy systems, the development of renewable energy 
sources, and the need to integrate various types of ener-
gy generation and consumption create a demand for in-
novative management methods. These include tradition-
al centralised methods, adaptive algorithms based on AI, 
decentralised approaches, and hybrid models. W.H. Liu et 
al. (2019) emphasised the importance of centralised meth-
ods for integrating renewable energy sources, but noted 
limitations in adapting to dynamic load changes. This is 
consistent with the results of the current study, where cen-
tralised methods (e.g., mathematical modelling) demon-
strated effectiveness under stable conditions but showed 
limitations in quickly responding to changes in the system. 
The use of AI significantly improves the adaptability of 
such approaches. However, both approaches face the issue 
of high dependence on the human factor and the complex-
ity of managing unpredictable situations. M. Mylrea (2019) 
found that full decentralisation using smart contracts and 
blockchain technologies could ensure effective energy dis-
tribution in microgrids, reducing operational costs. Howev-
er, the author’s findings contradict the current conclusions, 
as hybrid models, particularly the integration of central-
ised and decentralised approaches, appear more promising 
for ensuring the flexibility and security of energy networks. 
Blockchain enables process automation, but its implemen-
tation faces challenges of scalability and high computa-
tional complexity, which may limit its effectiveness in large 
networks (Rubino et al., 2021).

Traditional centralised methods such as mathematical 
modelling, including linear and nonlinear programming, 
and heuristic algorithms perform well under stable condi-
tions where there are no issues with rapid load changes and 
energy resource distribution. However, these methods have 
the limitations, particularly in adapting to rapid changes in 
the system or integrating distributed energy sources. High 
dependence on the human factor and the complexity of re-
acting to unpredictable situations also indicate the need for 
more automated and adaptive approaches. M.S. Nizami et 
al. (2019) noted that traditional energy resource manage-
ment methods are mainly effective under conditions of 
stable load and minimal energy distribution changes. How-
ever, as shown by the results of this study, such approach-
es do not provide sufficient flexibility and responsiveness  

under conditions of rapid demand changes or the integra-
tion of distributed energy sources, particularly renewables. 
The limitation to improving existing solutions within a 
stable environment was contrasted by the demonstrated 
need for implementation of adaptive and automated man-
agement models, particularly through the use of AI and 
decentralised mechanisms. Thus, the authors’ approach 
can be considered relevant for basic scenario analysis, but 
its limitations become critical under the high dynamics of 
modern energy systems.

The implementation of machine learning and AI al-
gorithms for load forecasting and energy resource man-
agement optimisation has become an important step in 
solving these issues. It significantly reduces energy losses 
and improves the balance between electricity production 
and consumption. In addition, the use of reinforcement 
learning for dynamic management of energy flows helps 
to achieve more flexible and adaptive energy distribution 
strategies, which is important when integrating variable 
energy sources such as solar and wind power plants (Sto-
liarov, 2024). H. Yao et al. (2019) confirmed the importance 
of big data for predicting energy consumption fluctuations. 
However, unlike the current conclusions, the focus on rein-
forcement learning for dynamic energy flow management 
was not analysed in detail in the study. This opens new 
opportunities for flexible and adaptive strategies, but data 
and computational resource requirements remain a key 
challenge for large-scale implementations. D.  Arnold  et 
al.  (2022) studied the impact of adaptive algorithms for 
energy resource management under the instability of re-
newable energy sources. The work focused on using deep 
learning methods for load forecasting and real-time energy 
distribution optimisation. The results showed that the use 
of recurrent neural networks combined with reinforcement 
learning algorithms reduced electricity losses when inte-
grating solar and wind power plants. Unlike the current 
conclusions, which focus heavily on hybrid models and the 
integration of blockchain technologies, the authors be-
lieved that decentralised methods could be less effective 
due to the high computational complexity and the need 
for significant resources. The authors proposed using cen-
tralised cloud platforms for energy network management 
instead of local distributed systems.

M. Kim et al. (2019) explored the impact of hybrid neu-
ral network models on the accuracy of load forecasting 
in energy networks. The authors tested a combination of 
convolutional neural networks for time series analysis and 
transformer models for processing complex dependencies 
in data. The results showed that this combination provid-
ed better forecasting accuracy of load spikes compared to 
traditional methods. Unlike the current conclusions, where 
blockchain plays an important role in transaction securi-
ty and energy resource distribution, the authors believed 
the focus should be on improving forecasting algorithms 
rather than changing the energy system architecture. De-
centralised approaches, particularly the use of blockchain 
technologies and smart contracts, open new opportunities  
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for secure and transparent energy resource distribution 
without the need for centralised control (Sherstniov & 
Osadchuk,  2024). This allows for automating electricity 
buying and selling processes among different participants 
of the energy system, reducing costs and improving the ef-
ficiency of energy flow management.

Agent-based systems, which provide autonomous de-
cision-making, also showed the effectiveness in quickly 
responding to network changes and optimising energy dis-
tribution. D. Kirli et al. (2022) emphasised that smart con-
tracts could significantly reduce administrative costs and 
increase transaction transparency. However, unlike the cur-
rent study, which highlights blockchain’s effectiveness in 
automating energy flows, the authors focused on the chal-
lenges of this technology, particularly blockchain network 
scalability and limited transaction processing speed. Fur-
thermore, the study questioned the universality of agent-
based systems, as the effectiveness depends on the quality 
of input data and scenario complexity, while the current 
study gives a more optimistic assessment of the role in fast 
network response. Hybrid models that combine the advan-
tages of centralised and decentralised approaches provide 
even greater efficiency, allowing control at the central lev-
el while granting autonomy to local energy system nodes 
(Kudabayev et al., 2022). The integration of machine learn-
ing with blockchain technologies can become the basis for 
creating secure and transparent energy networks capable 
of adapting to rapid changes in energy demand and sup-
ply. D. Espín-Sarzosa et al. (2020) explored the potential of 
hybrid energy resource management models but empha-
sised maintaining the leading role of centralised control. 
The authors argued that excessive autonomy of local nodes 
may pose additional risks to network stability, especially 
during peak loads or critical situations. In contrast, the re-
sults of this study demonstrated the effectiveness of ap-
proaches involving flexible interaction between centralised 
and decentralised elements, with the ability to dynamically 
redistribute management functions depending on the cur-
rent system state. In this context, the authors’ statement 
may be considered valid for systems with a low level of dig-
italisation, but it insufficiently considers the potential of 
modern technologies such as AI, blockchain, and the In-
ternet of Things, which enable local nodes to act auton-
omously without losing overall controllability. Moreover, 
the authors were sceptical of integrating machine learning 
with blockchain technologies, arguing that the complexity 
of implementing such systems and the limited transaction 
processing speed of distributed ledgers could significantly 
reduce the practical effectiveness under real conditions. At 
the same time, the study confirmed that combining adap-
tive optimisation algorithms with traditional management 
methods makes it possible to strike a balance between en-
ergy system stability and flexibility.

In the future, further improvement of AI algorithms 
and the development of distributed generation technolo-
gies may lead to the creation of even more efficient, reli-
able, and secure energy systems (Marignetti et al., 2023). 

M.R.  Mojumder  et al.  (2022) examined the prospects of 
energy system development with a focus on balancing 
traditional and innovative approaches. Unlike the current 
approach, which emphasises harmoniously combining 
various management methods, the authors argued that 
the future of energy systems depends more on developing 
decentralised solutions and autonomous networks. The 
researchers stated that centralised approaches are losing 
effectiveness due to limited flexibility and the complexi-
ty of integrating distributed energy sources. The study 
showed that the further development of distributed gener-
ation technologies and the improvement of AI algorithms 
would reduce dependence on central control, which, in 
the opinion, is a key step towards creating more efficient 
and stable energy systems. At the same time, the authors 
agreed that automation and load forecasting are critically 
important aspects of future energy networks. S. Areekka-
ra et al. (2021), in the study, analysed the effectiveness of 
integrating multi-agent systems for autonomous energy 
network management. The authors focused on the use of 
agent-based algorithms allowing local network nodes to 
make decisions independently regarding energy distribu-
tion, which, according to the findings, improves resource 
use efficiency. However, unlike the current results, which 
highlight the importance of combining centralised and de-
centralised methods, the authors believed that centralised 
systems adapt too slowly to changes in demand and gen-
eration. Therefore, the authors proposed full autonomy of 
local agents without the involvement of central control.

The study analysed the research results and the cor-
relation with the work of other authors. The obtained data 
confirmed the effectiveness of applying hybrid energy re-
source management models combining centralised and 
decentralised approaches. It was found that integrating 
machine learning algorithms and blockchain technologies 
improves the adaptability of the energy system to varia-
ble conditions, reduces energy losses, and enhances overall 
network stability. Comparison with other studies revealed 
both confirmation of key results and differences in ap-
proaches and emphases, highlighting the need for further 
research in this field.

CONCLUSIONS
As a result of the conducted research, modern approaches 
to energy distribution optimisation and network security 
provision using AI and blockchain technologies were con-
sidered. The use of intelligent methods such as machine 
learning algorithms, neural networks, reinforcement learn-
ing methods, and hybrid models demonstrated significant 
potential in improving the efficiency of energy system 
management, reducing energy consumption, and enhanc-
ing load forecasting. The integration of AI into energy 
systems enabled the creation of adaptive, self-regulating 
networks capable of operating effectively even under dy-
namic conditions, where traditional control methods were 
no longer sufficiently effective. In particular, convolution-
al and recurrent neural network algorithms provided high 
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accuracy in forecasting energy demand and adaptability to 
changing network conditions.

One promising area was the use of blockchain tech-
nologies for decentralised distribution of energy resources, 
which increased transparency, security, and efficiency of 
operations in energy systems. The implementation of such 
technologies made it possible to ensure greater protection 
against cyber threats, reducing the risk of unauthorised ac-
cess to energy networks and decreasing management costs. 
Anomaly detection using AI helped to identify technical 
malfunctions and potential cyber threats in a timely man-
ner, enhancing the reliability and security of energy sys-
tems. Clustering and anomaly detection methods played an 
important role in strengthening the cybersecurity of energy 
networks and enabled prompt responses to vulnerabilities.

However, despite significant progress in the applica-
tion of AI and blockchain technologies, there were certain 
limitations, particularly in the complexity of model config-
uration, the need for large amounts of training data, and 

the requirements for computational resources. Therefore, 
an important future task was the optimisation of these 
technologies to improve the scalability and efficiency un-
der real conditions.

Thus, modern approaches to energy resource manage-
ment aimed to increase the efficiency of electricity use, 
reduce losses, and improve network resilience. Further de-
velopment of intelligent algorithms and distributed gener-
ation technologies would contribute to the creation of more 
adaptive, secure, and energy-efficient systems of the future.
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Оптимізація енергорозподілу та виявлення вразливостей  
у мережах за допомогою штучного інтелекту

Анотація. Метою роботи було дослідження та аналіз можливостей застосування штучного інтелекту для оптимізації 
процесів енергорозподілу та виявлення вразливостей в енергетичних мережах. Робота спрямована на вивчення 
методів, алгоритмів і підходів, які дозволяють підвищити ефективність управління енергетичними системами, 
зменшити втрати енергії, покращити стійкість мереж до зовнішніх загроз і забезпечити точніше прогнозування 
попиту та пропозиції. Особливу увагу приділено застосуванню інтелектуальних методів для виявлення аномалій 
та вразливих точок в енергетичних мережах, що допомагає своєчасно реагувати на потенційні кібератаки, технічні 
несправності чи інші ризики. У роботі розглянуто сучасні методи управління енергетичними потоками, зокрема 
використання нейромережевих алгоритмів та блокчейн-технологій, а також їх інтеграцію в енергосистеми 
для підвищення ефективності та стабільності мереж. Застосування алгоритмів машинного навчання, таких як 
згорткові та рекурентні нейронні мережі, дозволяє значно покращити точність прогнозування навантаження та 
адаптивність до змінних умов мережі. Методи прогнозування навантаження, включаючи нейронні мережі, дерева 
рішень та підкріплене навчання, сприяють зменшенню витрат енергії та попередженню перевантажень. У той 
же час, виявлення аномалій за допомогою інтелектуальних систем дозволяє своєчасно виявляти несправності та 
потенційні атаки, що підвищує безпеку та надійність системи. Одним із перспективних рішень є впровадження 
блокчейн-технологій для децентралізованого розподілу енергетичних ресурсів, що забезпечує прозорість, безпеку та 
ефективність операцій. Прогнозування навантаження та управління енергетичними ресурсами через інтелектуальні 
системи дозволяє створювати більш адаптивні, саморегульовані та стабільні енергетичні мережі

Ключові слова: прогнозування навантаження; цифрова трансформація; мікромережі; оцінка ризиків; 
нейромережеві моделі
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