МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ МИКОЛАЇВСЬКИЙ НАЦІОНАЛЬНИЙ АГРАРНИЙ УНІВЕРСИТЕТ

Навчально–науковий інститут економіки та управління Обліково–фінансовий факультет

Кафедра інформаційних систем і технологій

ПРИКЛАДНЕ ПРОГРАМУВАННЯ

Методичні рекомендації

до виконання практичних робіт для здобувачів вищої освіти ступеня «бакалавр» напряму підготовки 6.030502 «Економічна кібернетика» денної форми навчання

МИКОЛАЇВ

УДК 004.41 П75

Друкується за рішенням науково-методичної комісії обліково-фінансового факультету Миколаївського національного аграрного університету від «26» листопада 2018 р., протокол №3.

Укладач:

Ю. В. Волосюк – канд. техн. наук, доцент, завідувач кафедри інформаційних систем і технологій Миколаївського національного аграрного університету

Рецензенти:

- I. П. Атаманюк д-р техн. наук, професор, завідувач кафедри вищої та прикладної математики Миколаївського національного аграрного університету;
- Д. М. Самойленко канд. ф.-м. наук, доцент кафедри електрообладнання суден та інформаційної безпеки Національного університету кораблебудування імені адмірала Макарова.

Зміст

Практична робота № 1. Лінійний обчислювальний процес	4
Практична робота № 2. Розгалужений обчислювальний процес	7
Практична робота № 3. Циклічний обчислювальний процес	12
Практична робота № 4. Одновимірні масиви	15
Практична робота № 5. Двовимірні масиви	19
Практична робота № 6. Процедури	24
Практична робота № 7. Функції	27
Практична робота № 8. Побудова графіків функцій	31
Додаток1. Завдання до лабораторних робіт	35
Завдання до лабораторної роботи № 1. Лінійний обчислювальний	
процес	35
Завдання до лабораторної роботи № 2. Розгалужений обчислювальний	
процес	37
Завдання до лабораторної роботи № 3. Циклічний обчислювальний	
процес	40
Завдання до лабораторної роботи № 4. Одновимірні масиви	42
Завдання до лабораторної роботи № 5. Двовимірні масиви	44
Завдання до лабораторних робіт № 6, 7. Процедури та функції	46
Завдання до лабораторної роботи № 8. Побудова графіків функцій	49
РЕКОМЕНДОВАНА ЛІТЕРАТУРА	50

ПРАКТИЧНА РОБОТА №1 Тема: Лінійний обчислювальний процес

1. Мета роботи

Дослідити роботу оператора присвоювання мови програмування Object Pascal, засвоїти методику складання, налагодження та розрахунку програм лінійних обчислювальних процесів на персональній електронно-обчислювальної машині (ПЕОМ).

2. Постановка завдання

Скласти псевдокод та програму мовою Object Pascal відповідно до заданого варіанта. Налагодити та розв'язати задачу на ПЕОМ.

3. Теоретичні відомості

Вираз – це послідовність, що складається з констант, імен, операцій, стандартних функцій. Значення виразу обчислюється послідовно зліва направо і з урахуванням пріоритетів операцій (табл. 1). Основні стандартні математичні функції мови Object Pascal наведені у таблиці 2.

Таблиця 1. Пріоритет операцій

Назва операції	Пріоритет
@, not	найвищий
*, /, div, mod, as, and, shi, shr	другий за найвищим
+, -, or, xor	середній
=, <>, <, >, <=, >=, in, is	найнижчий

Таблиця 2. Стандартні математичні функції

Математичний	Запис мовою		Тип
вираз	Object Pascal	значення, що повертається	результату
X	Abs(x)	Абсолютна величина числа	Збігається з
			типом х
sin x	Sin(x)	Синус аргументу	real
COS X	Cos(x)	Косинус аргументу	real
arctg x	Arctan(x)	Арктангенс аргументу	real
x^2	Sqr(X)	Квадрат аргументу	real
\sqrt{x}	Sqrt(x)	Корінь квадратний з	real
-		аргументу	
π	Pi	число:	real
		3.1415926535897932385	
ex	Exp(x)	Експонента	real
ln x	Ln(x)	Натуральний логарифм	real
	a Mod b	Залишок від ділення цілих	Integer
		чисел	

Математичний вираз	Запис мовою Object Pascal	Значення, що повертається	Тип результату
	a Div b	Ціла частина від ділення	
		цілих чисел	integer
	Int(X)	ціла частина аргументу	integer
	Frac(X)	дрібна частина аргументу:	real
		X-Int(X)	
	Round(X)	округлення до найближчого	
		цілого значення аргументу	integer
	ODD(X)	визначення парності	
	SUCC(X)	визначення наступного	
		значення	
	PRED(X)	визначення попереднього	
		значення	
	TRUNC(X)	відкидання дробової	
		частини	
	ORD(X)	визначення порядкового	
		номера	
	CHR(X)	визначення символу за	
		порядковим номером	

Таблиця 2. Стандартні математичні функції (продовження)

Математичні функції, що використовуються модулем Math, наведено у таблиці 3.

Таблиця 3. Математичні функції, що використовуються модулем Math

Математичний	Запис мовою		Тип
вираз	Delphi	Значення, що повертається	результату
ab	Power(a,b)	Число а у ступені b	real
$n\sqrt{a}$	Power(a,1/n)	Число а у ступені 1/n	real
tg x	Tan(x)	Тангенс аргументу	real
ctg x	CoTan(x)	Котангенс аргументу	real
arcsin x	Arcsin (x)	Арксинус аргументу	real
arccos x	Arccos (x)	Арккосинус аргументу	real
log _a x	LogN(a,x)	Логарифм числа х по	real
		основі а	

4. Програма роботи

- 4.1. Записати запропанований викладачем варіант завдання з Додатка 1.
- 4.2. Ознайомитись з рекомендованою літературою та конспектом лекцій.
- 4.3. Програмування задачі:
- скласти псевдокод алгоритму;
- скласти програму розв'язання задачі мовою Object Pascal.

4.4. Розв'язання задачі на ПЕОМ.

На ПЕОМ набрати, відлагодити та розв'язати складену програму.

4.5. Оформлення звіту.

Звіт повинен містити:

- номер лабораторної роботи та її назву;

- умову задачі та дані свого варіанта;

– псевдокод програми;

 – лістинг (або рукопис) програми з коментарями до кожної використаної змінної та скриншоти форми проекту;

– результати розрахунку задачі;

– висновки.

Приклад.

Обчислити значення змінних a і b при заданих значеннях x = 3,981, y = -1,625, z = 2.

Розв'язання:

- 1. Створимо нову папку.
- 2. Запустимо Delphi.

3. Зі сторінки Standard Палітри Компонентів на Form1 розташуємо три компоненти Edit, чотири компоненти Label і компоненти Button і Memo (рис. 1).

Form1		•
Label1		· · · · · · · · · · · · · · · · · · ·
Label2	Edit1	
Label3	Edit2	
Label4	Edit3	
Memo1		
	Button1	

Рис. 1. Готова форма

4. Для мітки Labell установимо властивість Caption рівним 'Лінійний обчислювальний процес', а для Label2 , Label3 і Label4: 'X=', 'Y=' і 'Z=' відповідно.

5. Для компонентів Edit1, Edit2 і Edit3 установимо значення властивості Text рівним порожньому рядку.

6. Для компонента Memol виберемо властивість Lines і клацнемо по кнопці з трьома крапками. У вікні, що з'явилося, String list editor видалимо рядок 'Memol'.

7. Для кнопки Button1 установимо властивість Caption рівним 'Розв'язання'.

```
8. Створимо оброблювач події OnClick для кнопки Button1:
procedure TForm1.Button1Click(Sender: TObject); var
x, y, z, a, b: real;
begin
x := StrToFloat(Edit1.Text);
y := StrToFloat(Edit2.Text);
z := StrToFloat(Edit3.Text);
a := power(2,-x)*sqrt(x+power(abs(y),1/4));
b := power(cos(x),3)/(2+sin(x))+exp(z+1);
Memo1.Clear;
Memo1.Lines.Add('Pesyльтат:');
Memo1.Lines.Add('a = '+FloatToStr(a));
Memo1.Lines.Add('b = '+FloatToStr(b));
end;
```

9. Збережемо проект за допомогою команди File | Save All i запустимо його на виконання, використовуючи функціональну клавішу F9.

Примітка: При виконанні цього прикладу необхідно використовувати функції модуля Math. Тому у тексті програми після службового слова Uses cлід додати ім'я модуля, тобто: Uses [...], Math; де [...] – список імен модулів, що необхідні при роботі даної програми (додаються автоматично).

ПРАКТИЧНА РОБОТА №2

Тема: Розгалужений обчислювальний процес 1. Мета роботи

Дослідити роботу оператора умови мови програмування Object Pascal, засвоїти методику складання, налагодження та розрахунку програм розгалужених обчислювальних процесів на ПЕОМ.

2. Постановка завдання

Скласти псевдокод та програму мовою Object Pascal відповідно до заданого варіанта. Налагодити та розв'язати задачу на ПЕОМ.

3. Теоретичні відомостіЛогічним називається вираз, який може приймати одне з двох значень: true чи false. Простий логічний вираз складається з двох операндів і операції порівняння: > ,< , =, <>, >=, <=.

З простих операцій відносин можна побудувати складні логічні вираження із застосуванням до них як до операндів бульових операцій: not – заперечення, and – логічне TA, or – логічне ЧИ. Результат застосування бульових операцій not, and, or наведений у таблиці

X	Y	X and Y	X or Y	not X
false	false	false	false	true
false	true	false	true	true
true	false	false	true	false
true	true	true	true	false

Таблиця 4. Результати застосування бульових операцій

При запису логічних виразів із застосуванням бульових операцій потрібно пам'ятати, що першими виконується операція not, потім and, потім or. Операції відносини виконуються в останню чергу. Тому при записі логічних виражень важливу роль відіграє правильне розміщення дужок.

Оператор if призначений для реалізації розгалуженого обчислювального процесу. Загальний вид оператора if:

if <логічне вираження> then <onepatop1> else <onepatop2>;

На початку оператор if обчислює значення логічного вираження. Якщо значення логічного вираження дорівнює true, то виконується оператор1, інакше виконується оператор2.

Якщо яка-небудь дія повинна бути виконана тільки при виконанні визначеної умови і пропущена у випадку невиконання цієї умови, то оператор іf може бути записаний у скороченій формі:

if < логічне вираження > then < оператор > ;

4. Програма роботи

4.1. Записати запропанований викладачем варіант завдання з Додатка 1.

4.2. Ознайомитись з рекомендованою літературою та конспектом лекцій.

4.3. Програмування задачі:

- скласти псевдокод алгоритму;

– скласти програму розв'язання задачі мовою Object Pascal.

4.4. Розв'язання задачі на ПЕОМ.

На ПЕОМ набрати, відлагодити та розв'язати складену програму.

4.5. Оформлення звіту.

Звіт повинен містити:- номер лабораторної роботи та її назву;

- умову задачі та дані свого варіанта;

- псевдокод програми;

 – лістинг (або рукопис) програми з коментарями до кожної використаної змінної та скриншоти форми проекту;

- результати розрахунку задачі;

– висновки.

Приклад 1.

Обчислити значення змінної max(a,b,c) я $w = \begin{cases} \\ min(a,b) \end{cases}$ іл при заданих значеннях a = -6, b = 4 i c = 13.

інакше

якщо a > 0

Розв'язання

- 1. Створимо нову папку.
- 2. Запустимо Delphi.

3. Зі сторінки Standard Палітри Компонентів на Form1 розташуємо три компоненти Edit, чотири компоненти Label і компоненти Button і Memo (рис. 2):

🕻 Form1		
Label1		
Label2	Edit1	
Label3	Edit2	
Label4	Edit3	
Memo1		
	Button1	

Рис. 2. Готова форма

4. Для мітки Labell установимо властивість Caption рівним 'Розгалужувальний обчислювальний процес', а для Label2, Label3 і Label4: 'A =', 'B =' і 'C =' відповідно.

5. Для компонентів Edit1, Edit2 і Edit3 установимо значення властивості Text рівним порожньому рядку.

6. Для компонента Memol виберемо властивість Lines і клацнемо по кнопці з трьома крапками. У вікні, що з'явилося, String list editor видалимо рядок 'Memol'.

7. Для кнопки Buttonl установимо властивість Caption рівним 'Розв'язання'.

8. Створимо оброблювач події OnClick для кнопки Button1: procedure TForm1.Button1Click(Sender: TObject); var a, b, c, max, min, w: integer; begin a := StrToInt(Edit1.Text); b := StrToInt(Edit2.Text); c := StrToInt(Edit3.Text); max := a; if max<b then max := b; if max<c then max := c; min := a_i ; if min>b then min := b; if a>0 then w:=max else w:=min; Memol.Clear; Memol.Lines.Add('Результат:'); Memol.Lines.Add('w = '+IntToStr(w)) end;

9. Збережемо проект за допомогою команди головного меню File|Save All i запустимо його на виконання, використовуючи функціональну клавішу F9.

Приклад 2.

Обчислити значення змінної

 sin^{2} ab якщо а кратне 3 c = (cos(ab) - 3) якщо a < 2 та b > 1інакше

при заданих значеннях a = 8 i b = 2.5.

Розв'язання

- 1. Створимо нову папку.
- 2. Запустимо Delphi.

3. Зі сторінки Standard Палітри Компонентів на Form1 розташуємо два компоненти Edit, три компоненти Label, компоненти Button i Memo (рис. 3).

4. Для мітки Labell установимо властивість Caption рівним «Розгалужувальний обчислювальний процес», а для Label2 і Label3: 'A='i' В= відповідно.

🕻 Form1		E	
Label1			
••••••••••••••••••••••••••••••••••••••			
Label2	E dat		
	Euki		
17 a a			
• • • • • • • • • • • • • • •			
Label2	E DO		
· · · Labela	Edit2		1.1.1.1
	111		
· · · · Memol			
· · · · · · · · · · · · · · · · · · ·			
			1.1.1
			1.1.1
			1.1.1
		1.12.2.2.2.2.2	
		10000	
	Button1	10000	

Рис. 3. Готова форма

5. Для компонентів Editli Edit2 установимо значення властивості Техт рівним порожньому рядку.

6. Для компонента Memol виберемо властивість Lines і клацнемо по кнопці з трьома крапками. У вікні, що з'явилося, String list editor видалимо рядок 'Memol'.

7. Для кнопки Buttonl установимо властивість Caption рівним «Розв'язання».

8. Створимо оброблювач події OnClick для кнопки Button1:

procedure TForm1.Button1Click(Sender: TObject); var

```
a: integer;
b, c: real;
begin
a := StrToInt(Edit1.Text);
b := StrToFloat(Edit2.Text);
c:=0;
if (a mod 3)=0 then
c:=sqr(sin(a*b));
if (a<2) and (b>1) then
c:=cos(a+b)-3;
Memo1.Clear;
Memo1.Lines.Add('Pesyльтат:');
Memo1.Lines.Add('c = '+FloatToStr(c))
end;
```

9. Збережемо проект за допомогою команди головного меню File|Save All i запустимо його на виконання, використовуючи функціональну клавішу F9.

ПРАКТИЧНА РОБОТА №3 Тема: Циклічний обчислювальний процес

1. Мета роботи

Дослідити роботу операторів циклу алгоритмічної мови Object Pascal, засвоїти методику складання, налагодження та розрахунку програм циклічних обчислювальних процесів на ПЕОМ.

2. Постановка завдання

Скласти псевдокод та програму мовою Object Pascal відповідно до заданого варіанта. Налагодити та розв'язати задачу на ПЕОМ.

3. Теоретичні відомості

Оператори циклів

Часто при розв'язанні задач необхідно багаторазово виконувати визначену послідовність дій. Такі повторювані дії називаються циклами. У мові Object Pascal можлива організація 3-х видів циклів:

- 1. З параметром (оператор for).
- 2. З передумовою (оператор while).
- 3. З постумовою (оператор repeat).

Оператор FOR

Оператор циклу for організує виконання послідовності операторів заздалегідь задане число раз. Існують два варіанти оператора. Перший варіант (зі збільшенням лічильника):

```
for <лічильник>:=<початкове значення> to <кінцеве знач.> do <оператор>;
```

Другий варіант (зі зменшенням лічильника):

```
for <лічильник>:=<початкове знач.> downto <кінцеве знач.> do <оператор>;
```

де

<лічильник> – змінна порядкового типу – параметр циклу;

<початкове значення> і <кінцеве значення> – вираження, що повинні бути сумісними для присвоювання з параметром циклу;

<оператор> – це оператор, що виконується в циклі та утворює так зване тіло циклу.

Якщо в циклі необхідно виконати групу операторів, то її варто перетворити в один складений оператор, уклавши цю групу операторів в операторні дужки begin...end.

Спочатку лічильнику привласнюється початкове значення. Потім значення лічильника порівнюється з кінцевим значенням. Далі, поки лічильник менше чи дорівнює кінцевому значенню (у першому варіанті), або більше чи дорівнює кінцевому значенню (у другому варіанті), виконується чергова ітерація циклу. У протилежному випадку відбувається вихід з циклу.

Оператор циклу з передумовою WHILE Onepatop while має наступний формат: while <логічний вираз> do <оператор>; <оператор> – це простий чи складений оператор, що виконується в циклі стільки разів, поки < логічний вираз > приймає значення true. Він складає так зване тіло циклу. Цикл припиняється, якщо при черговому обчисленні логічного виразу його значення виявиться рівним false. Якщо в циклі необхідно виконати групу операторів, то її варто перетворити в один складений оператор, уклавши в операторні дужки begin…end.

Оператор циклу з постумовою REPEAT

```
Оператор гереаt має наступний формат:
repeat
<оператор1>;
<оператор2>;
...;
<оператор>
until <логічний вираз>;
<оператор1>; <оператор2>; ...; <оператор>- оператори
утворюючі тіло циклу.
```

На початку виконується група <onepatop1>; <onepatop2>; ...; <onepatop> . Потім обчислюється значення логічного виразу. Якщо воно дорівнює true, то цикл припиняється, у протилежному випадку виконується наступна ітерація циклу.

У тіло циклу оператора repeat може входити довільна кількість операторів. Використання операторних дужок begin...end в операторі repeat не обов'язкове, хоча їх присутність не буде помилкою.

4. Програма роботи

4.1. Записати запропанований викладачем варіант завдання з Додатка 1.

4.2. Ознайомитись з рекомендованою літературою та конспектом лекцій.

4.3. Програмування задачі:

- скласти псевдокод алгоритму;

- скласти програму розв'язання задачі мовою Object Pascal.

4.4. Розв'язання задачі на ПЕОМ.

На ПЕОМ набрати, відлагодити та розв'язати складену програму.

4.5. Оформлення звіту.

Звіт повинен містити:

- номер лабораторної роботи та її назву;
- умову задачі та дані свого варіанта;
- псевдокод програми;

 – лістинг (або рукопис) програми з коментарями до кожної використаної змінної та скриншоти форми проекту;

- результати розрахунку задачі;

– висновки.

Приклад 1.

Обчислити значення змінної $S = \sum (-1)^{n + 1} \frac{2n}{2n} = \frac{1}{x} 2^{2n}$ n! n = 5 при заданому значенні x = 3.5 <u>Розв'язання</u>

- 1. Створимо нову папку.
- 2. Запустимо Delphi.

3. Зі сторінки Standard Палітри Компонентів на Form1 розташуємо два компоненти Label, компоненти Button, Edit і Memo (рис. 4).

7 For	m1			-	
	Label1				
i i i i L	abel2	::	Edit1		- : : : :
				::::::	
	Memo1				
				;:::::	
	:::::	Butto	n1		

Рис. 4. Готова форма

4. Для мітки Labell установимо властивість Caption рівним 'Циклічний обчислювальний процес', а для Label2: 'x ='.

5. Для компонента Edit1 установимо значення властивості Text рівним порожньому рядку.

6. Для компонента Memol виберемо властивість Lines і клацнемо по кнопці з трьома крапками. У вікні, що з'явилося, String list editor видалимо рядок 'Memol'.

7. Для кнопки Button1 установимо властивість Caption рівним «Рішення».

8. Створимо оброблювач події OnClick для кнопки Button1: procedure TForm1.Button1Click(Sender: TObject); var n, k: integer; s, f, x: real; begin x := StrToFloat(Edit1.Text); s := 0; for n:=5 to 10 do begin f:=1; for k:=1 to n do f:=f*k;s:=s+power(-1, n+1)*(2*n-1)/f*power(x, 2*n); end; Memol.Clear; Memol.Lines.Add('Результат:'); Memol.Lines.Add('s = '+FloatToStr(s)) end;

9. Збережемо проект за допомогою команди головного меню File|Save All i запустимо його на виконання використовуючи функціональну клавішу F9.

Примітка: так як у тексті програми була використована функція power, що належить до модуля Math, то необхідно передбачити використання цього модуля, тобто добавити його ім'я після службового слова Uses.

ПРАКТИЧНА РОБОТА №4

Тема: Одновимірні масиви

1. Мета роботи

Дослідити роботу операторів циклу мови програмуваня Object Pascal, засвоїти методику складання, налагодження та розрахунку програм циклічних обчислювальних процесів для обробки векторів на ПЕОМ.

2. Постановка завдання

Скласти псевдокод та програму мовою Object Pascal відповідно до заданого варіанта. Налагодити та розв'язати задачу на ПЕОМ.

3. Теоретичні відомості

Масиви

Статичний тип-масив являє собою фіксовану кількість упорядкованих однотипних компонентів (елементів), позначених індексами. Він може бути одновимірним чи багатовимірним.

Задати тип-масив можна таким способом: type

<im'я типу>=array[<тип індексу (індексів)>] of <тип компонентів>;

Розмірність масиву може бути будь-якою, компоненти масиву також можуть бути будь-якого типу, індекс (індекси) можуть бути будь-якого порядкового типу, крім типів LongWord i Int64.

Доступ до компонентів масиву здійснюється вказівкою імені масиву, за яким у квадратних дужках міститься значення індексу (індексів) компонента.

4. Програма роботи

4.1. Записати запропанований викладачем варіант завдання з Додатка 1.

4.2. Ознайомитись з рекомендованою літературою та конспектом лекцій.

4.3. Програмування задачі:

- скласти псевдокод алгоритму;

- скласти програму розв'язання задачі мовою Object Pascal.

4.4. Розв'язання задачі на ПЕОМ.

На ПЕОМ набрати, відлагодити та розв'язати складену програму.

4.5. Оформлення звіту.

Звіт повинен містити:

- номер лабораторної роботи та її назву;

- умову задачі та дані свого варіанта;

- псевдокод програми;

 – лістинг (або рукопис) програми з коментарями до кожної використаної змінної та скриншоти форми проекту;

- результати розрахунку задачі;

– висновки.

Приклад 1.

Завдання: Заданий одновимірний масив А(7) символьного типу. Поміняти місцями максимальний і останній елементи.

Розв'язання

1. Створимо нову папку.

2. Запустимо Delphi.

3. Зі сторінок Standard і Additional Палітри Компонентів на Form1 розташуємо два компоненти StringGrid і компонент Button (рис. 5).

Рис. 5. Готова форма

4. За допомогою Інспектора Об'єктів властивостям компонента StringGrid1 і StringGrid2 надамо наступні значення:

Утворимо розміри компонента StringGrid1 таким чином, щоб у ньому уміщалися 1 рядок і 7 стовпців.

5. В Інспекторі Об'єктів для компонента StringGrid1 виберемо властивість Options. Ввійдемо в нього за допомогою подвійного натискання миші. Значення прапора goEditing зробимо рівним True.

6. Для компонента Button1 надамо значення властивості Caption рівним 'Виконати'.

7. Активізуємо кнопку Button1 і створимо наступний оброблювач події OnClick:

```
for i := 2 to n do
if max < a[i] then
begin
max := a[i];
nmax := i
end;
a[nmax]:= a[n];
a[n]:= max;
for i:=1 to n do
StringGrid2.Cells[i-1,0]:= a[i];
end;</pre>
```

8. Збережемо проект за допомогою команди головного меню File|Save All i запустимо його на виконання, використовуючи функціональну клавішу F9.

Приклад 2.

Завдання: Задано одновимірний масив А(7) цілого типу. Знайти суму і кількість парних елементів.

Розв'язання

Введемо позначення: sum – сума парних елементів, kol – кількість парних елементів.

1. Створимо нову папку.

2. Запустимо Delphi.

3. Зі сторінок Standard і Additional Палітри Компонентів на Form1 розташуємо компоненти StringGrid, Memo i Button (рис. 6).

4. За допомогою Інспектора Об'єктів властивостям компонента StringGrid1 надамо наступні значення:

FixedCols -0,

FixedRows -0,

ColCount -7, RowCount -1.

Рис. 6. Готова форма

Установимо розміри компонента StringGrid1 таким чином, щоб у ньому уміщалися 1 рядок і 7 стовпців.

5. В Інспекторі Об'єктів для компонента StringGrid1 виберемо властивість Options. Ввійдемо в нього за допомогою подвійного натискання миші. Значення прапора goEditing зробимо рівним True.

6. Для компонента Memol виберемо властивість Lines і клацнемо по кнопці з трьома крапками. У вікні, що з'явилося, String list editor видалимо рядок 'Memol'.

7. Для компонента Button1 надамо значення властивості Caption рівним 'Розв'язання'.

8. Активізуємо кнопку Button1 і створимо наступний оброблювач події OnClick:

```
procedure TForm1.Button1Click(Sender:
                                          TObject);
const
n = 7;
var
     a: array [1..n] of integer;
     i, sum, kol: integer;
begin
for i:= 1 to n do
a[i] := StrToInt(StringGrid1.Cells[i-1,0]);
sum:=0;
kol:=0;
for i:= 1 to n do
if a[i] mod 2=0 then
begin
sum:=sum+a[i];
kol:=kol+1;
end;
Memol.Clear;
Memol.Lines.Add('сума парних елементів = '
+IntToStr(sum));
Memol.Lines.Add('кількість парних елементів = '
+IntToStr(kol));
end;
```

9. Збережемо проект за допомогою команди головного меню File|Save All i запустимо його на виконання, використовуючи функціональну клавішу F9.

ПРАКТИЧНА РОБОТА №5

Тема: Двовимірні масиви

1. Мета роботи

Дослідити роботу операторів циклу мови програмування Object Pascal, засвоїти методику складання, налагодження та розрахунку програм для процесів обробки матриць на ПЕОМ.

2. Постановка завдання

Скласти псевдокод та програму мовою Object Pascal відповідно до заданого варіанта. Налагодити та розв'язати задачу на ПЕОМ.

3. Теоретичні відомості

Двовимірний масив (матриця) подається як одновимірний, елементи якого – також масиви. Елементи двовимірного масиву зберігаються по рядках, тобто якщо ними проходити в напрямку їх розміщення в пам'яті, то спочатку буде змінюватися правий індекс.

Доступ до елементів можливий за допомогою вкладених циклів for, де перший цикл надає доступ до перебирання лівих індексів (рядків), а другий, вкладений – до правих індексів (стовпців).

4. Програма роботи

4.1. Записати запропанований викладачем варіант завдання з Додатка 1.

- 4.2. Ознайомитись з рекомендованою літературою та конспектом лекцій.
- 4.3. Програмування задачі:
- скласти псевдокод алгоритму;
- скласти програму розв'язання задачі мовою Object Pascal.
- 4.4. Розв'язання задачі на ПЕОМ.
- На ПЕОМ набрати, відлагодити та розв'язати складену програму.
- 4.5. Оформлення звіту.
- Звіт повинен містити:
- номер лабораторної роботи та її назву;
- умову задачі та дані свого варіанта;
- псевдокод програми;

 – лістинг (або рукопис) програми з коментарями до кожної використаної змінної та скриншоти форми проекту;

– результати розрахунку задачі;

– висновки.

Приклад 1.

Завдання: Задано масив A (5, 5), дійсного типу. Заповнити другий масив мінімальними по стовпцях елементами першого масиву.

<u>Розв'язання</u>

1. Створимо нову папку.

2. Запустимо Delphi.

3. Зі сторінок Standard і Additional Палітри Компонентів на Form1 розташуємо два компоненти StringGrid і два компоненти Button (рис. 7).

Рис. 7. Готова форма

4. За допомогою Інспектора Об'єктів властивостям компонента StringGridl задамо наступні значення:

FixedCols -0,

FixedRows -0,

ColCount -5, RowCount -5.

Установимо розміри компонента StringGrid1 таким чином, щоб у них уміщалося 5 рядків і 5 стовпців.

5. За допомогою Інспектора Об'єктів властивостям компонента StringGrid2 надамо наступні значення:

FixedCols -0, FixedRows -0, ColCount -5, RowCount -1.

Змінимо розміри компонента StringGrid2 таким чином, щоб у них уміщався 1 рядок і 5 стовпців.

6. В Інспекторі Об'єктів для першої таблиці виберемо властивість Options. Ввійдемо в нього за допомогою подвійного натискання миші. Значення прапора goEditing зробимо рівним True.

7. Для компонентів Button1 і Button2 задамо значення властивості Caption рівним: 'Розв'язання' і 'Очистити' відповідно.

8. Активізуємо кнопку 'Розв'язання' і створимо наступний оброблювач події OnClick:

```
procedure TForm1.Button1Click(Sender: TObject);
vararray [1..5,1..5] of real;
     a: array [1..5] of real;
i, j: integer;
begin
for i:= 1 to 5 do
for j := 1 to 5 do
a[i,j]:= StrToFloat(StringGrid1.Cells[j-1,i-1]); for j:=
1 to 5 do
begin
b[j]:= a[1,j];
for i:=1 to 5 do
if b[j]>a[i,j] then
b[j]:= a[i,j];
end;
for i:= 1 to 5 do
StringGrid2.Cells[i-1,0]:=FloatToStr(b[i]);
end;
```

9. Для очищення другої таблиці призначена кнопка 'Очистити'. Активізуємо її подвійним натисканням й у заготівку обробчика події розташуємо наступний код:

10. Збережемо проект за допомогою команди головного меню File|Save All і запустимо його на виконання, використовуючи функціональну клавішу F9.

Приклад 2.

Завдання: Задан масив А (3, 4), дійсного типу. Знайти номер рядка, в якому знаходяться тільки додатні елементи.

Розв'язання

1. Створимо нову папку.

2. Запустимо Delphi.

3. Зі сторінок Standard і Additional Палітри Компонентів на Form1 розташуємо компоненти StringGrid, Memo і Button (рис. 8).

4. За допомогою Інспектора Об'єктів властивості компонента StringGrid1 надамо наступні значення:

```
FixedCols -0,
FixedRows -0,
ColCount -4,
RowCount -3.
```


Рис. 8. Готова форма

Встановимо розміри компонентів StringGrid1 таким чином, щоб у них уміщалося 3 рядки і 4 стовпці.

5. В Інспекторі Об'єктів для StringGrid1 виберемо властивість Options. Ввійдемо в нього за допомогою подвійного натискання миші. Значення прапора goEditing зробимо рівним True.

6. Для компонента Memol виберемо властивість Lines і клацнемо по кнопці з трьома крапками. У вікні, що з'явилося, String list editor видалимо рядок 'Memol'.

7. Для компонента Buttonl задамо значення властивості Caption рівним «Розв'язання».

8. Активізуємо кнопку Button1 подвійним клацанням і створимо наступний оброблювач події OnClick:

```
procedure TForm1.Button1Click(Sender: TObject);
var
     a: array [1..3,1..4] of real;
     min: real;
i, j, k: integer;
begin
for i:= 1 to 3 do
for j := 1 to 4 do
a[i,j]:= StrToFloat(StringGrid1.Cells[j-1,i-1]);
Memo1.Lines.Clear;
for i:= 1 to 3 do
begin
k:=0;
for j:=1 to 4 do
if a[i,j]>0 then
             k := k+1;
if k=4 then
```

```
Memol.Lines.Add('n='+IntToStr(i));
end;
end;
```

9. Збережемо проект за допомогою команди головного меню File|Save All i запустимо його на виконання, використовуючи функціональну клавішу F9.

ПРАКТИЧНА РОБОТА №6

Тема: Процедури

1. Мета роботи

Дослідити роботу, призначення, форму запису та особливості вживання процедур мови програмування Object Pascal. Засвоїти методику складання програм на ПЕОМ з використанням функцій.

2. Постановка завдання

Скласти псевдокод та програму мовою Object Pascal відповідно до заданого варіанта. Налагодити та розв'язати задачу на ПЕОМ.

3. Теоретичні відомості

Процедури і функції.

Процедури і функції по своїй структурі подібні звичайним програмам і мають загальну назву — підпрограми. Застосування підпрограм дає можливість зменшити число повторень однієї і тієї ж послідовності операторів, а так само конструювати програму, як набір окремих підпрограм. Для складних задач це істотно спрощує процес програмування.

У процедурах і функціях, як і в звичайних програмах, можуть бути описані власні мітки, константи, типи, власні змінні і навіть власні процедури і функції.

Опис процедури.

Опис кожної процедури починається з заголовка, в якому задається ім'я процедури і список формальних параметрів із указівкою їх типів; процедура може бути і без параметрів, тоді в заголовку вказується тільки її ім'я. За допомогою параметрів здійснюється передача вихідних даних у процедуру, а також передача результатів роботи назад у програму.

Загальна форма запису заголовка процедури:

procedure <iм'я процедури> (<список формальних параметрів>);

Список формальних параметрів може містити в собі параметри-значення, параметри-змінні, перед якими повинне стояти зарезервоване слово var, і деякі інші категорії формальних параметрів.

Виклик і виконання процедури здійснюється за допомогою оператора процедури:

<ім'я процедури>(<список фактичних параметрів>);

4. Програма роботи

4.1. Записати запропанований викладачем варіант завдання з Додатка 1.

4.2. Ознайомитись з рекомендованою літературою та конспектом лекцій.

4.3. Програмування задачі:

- скласти псевдокод алгоритму;

- скласти програму розв'язання задачі мовою Object Pascal.

4.4. Розв'язання задачі на ПЕОМ.

На ПЕОМ набрати, відлагодити та розв'язати складену програму.

4.5. Оформлення звіту.

Звіт повинен містити:

- номер лабораторної роботи та її назву;

- умову задачі та дані свого варіанта;

- псевдокод програми;

- лістинг (або рукопис) програми з коментарями до кожної

використаної змінної та скриншоти форми проекту;

- результати розрахунку задачі;

– висновки.

Приклад 1.

Обчислити значення наступного виразу:

$$z = f(\sin\alpha, a) + f(\cos\alpha, a) + f(\sin\alpha - \cos\alpha, a^2 - 1) + f(\cos\alpha, a^2), de$$

 $f(u,t) = \begin{cases} |u + \sin t, & \text{якщо} \quad u > 0 \\ |u + t, & \text{якщо} \quad u \le 0 \end{cases}$

при $\alpha = \pi/18$, a = -2.1

<u>Розв'язання</u>

1. Створимо нову папку.

2. Запустимо Delphi.

3. Зі сторінок Standard і Additional Палітри Компонентів на Form1 розташуємо три компоненти Label, дві компоненти Edit, компоненти Memo i Button (рис. 9).

🌠 Form1		0
	Label1	
Label2	Edit1	Memo1
Label3	Edit2	
	Button1	

Рис. 9. Готова форма

4. Для міток Label1, Label2 і Label3 установимо властивість Caption рівним 'Процедура', 'alpha =' і 'а =' відповідно.

5. Для компонентів Edit1 і Edit2 установимо значення властивості Text рівним порожньому рядку.

6. Для компонента Memol виберемо властивість Lines і клацнемо по кнопці з трьома крапками. У вікні, що з'явилося, String list editor видалимо рядок 'Memol'.

7. Кнопці Buttonl установимо властивість Caption рівним 'Розв'язання'.

8. Для обчислення значення змінної и необхідно чотири рази знайти функцію f(u,t). Назвемо процедуру FUT. Вона буде мати три параметри: два вхідних – u, t і один вихідний – f. Отже, заголовок процедури буде мати вигляд:

procedure FUT(u, t: real; var f: real);

Склавши заголовок процедури, можна записати програму обчислення результату:

end;

Таким чином, ми склали опис процедури. Переключимося з вікна форми у вікно модуля (F12) і наберемо текст процедури в розділі implementation модуля.

9. Для того щоб скористатися процедурою, її потрібно викликати з оброблювача події OnClick для кнопки Button1. Наведемо зміст розділу implementation модуля:

```
implementation
{$R *.DFM}
procedure FUT(u, t: real; var f: real);
begin
if u>0 then
f:= u+sin(t);
      if u<=0 then
         f:= u+t;
end;
procedure TForm1.Button1Click(Sender: TObject); var
alpha, a, z, f1, f2, f3, f4: real; begin
alpha:= StrToFloat(Edit1.Text); a:=
StrToFloat(Edit2.Text); fut(sin(alpha), a, f1);
fut(cos(alpha), a, f2); fut(sin(alpha)-
cos(alpha), sqr(a)-1, f3); fut(cos(alpha),
sqr(a), f4); z:= f1+f2+f3+f4;
Memol.Clear;
Memol.Lines.Add('Pesyntat:');
Memo1.Lines.Add('z = '+FloatToStr(z))
end;
```

10. Збережемо проект за допомогою команди головного меню File|Save All і запустимо його на виконання, використовуючи функціональну клавішу F9.

ПРАКТИЧНА РОБОТА №7

Тема: Функції

1. Мета роботи

Дослідити роботу, призначення, форму запису та особливості вживання функцій мови програмування Object Pascal. Засвоїти методику складання програм на ПЕОМ з використанням функцій.

2. Постановка завдання

Скласти псевдокод та програму мовою Object Pascal відповідно до заданого варіанта. Налагодити та розв'язати задачу на ПЕОМ.

3. Теоретичні відомості

Опис функції

Опис функції подібний опису процедури, однак маються деякі відмінності. Найважливіша з них полягає в тому, що результатом роботи функції є одне (скалярне) значення довільного типу. Тип результату задається в заголовку функції, загальний вигляд якого:

```
function <iм'я функції>(<список формальних параметрів>)<тип
```

результату>;

Серед операторів у тілі функції обов'язково повиннен бути присутнім хоча б один оператор присвоювання, у лівій частині якого знаходиться ім'я стандартної змінної result і яка трактується як результат, що повертається функцією. Цей оператор і визначає значення, яке виробляється функцією. Виклик і виконання функції виконуються при обчисленні значення функції:

<ім'я функції> (<список фактичних параметрів>),

який входить у деякий вираз або оператор в основній програмі.

4. Програма роботи

4.1. Записати запропанований викладачем варіант завдання з Додатка 1.

4.2. Ознайомитись з рекомендованою літературою та конспектом лекцій.

4.3. Програмування задачі:

- скласти псевдокод алгоритму;

- скласти програму розв'язання задачі мовою Object Pascal.

4.4. Розв'язання задачі на ПЕОМ.

На ПЕОМ набрати, відлагодити та розв'язати складену програму.

4.5. Оформлення звіту.

Звіт повинен містити:

- номер лабораторної роботи та її назву;

– умову задачі та дані свого варіанта;

- псевдокод програми;

 – лістинг (або рукопис) програми з коментарями до кожної використаної змінної та скриншоти форми проекту;

– результати розрахунку задачі;

– висновки.

Приклад 1.

Обчислити:

$$W_{i=1} = \prod^{5} \left(\sin^{2} x^{i} - a_{i} \right)^{2} + \prod^{8} \left(\sin^{2} y^{i} - a_{i} \right)^{2}$$

при х = 0.78, у = 1.87, аі = (1.25, 0.56, 8.9, 0.23, 0.12, 5.3, 8.96, 3.25).

Розв'язання

- 1. Створимо нову папку.
- 2. Запустимо Delphi.

3. Зі сторінок Standard і Additional Палітри Компонентів на Form1 розташуємо чотири компоненти Label, два компоненти Edit, компоненти StringGrid, Memo i Button (рис. 10).

Рис. 10. Готова форма

4. За допомогою Інспектора Об'єктів властивості компонента StringGrid1 надамо наступні значення:

FixedCols – 0,

FixedRows -0,

ColCount -8,

RowCount -1

Установимо розміри компонента StringGrid1 таким чином, щоб у ньому уміщалися 1 рядок і 8 стовпців.

5. В Інспекторі Об'єктів для StringGridl виберемо властивість Options. Ввійдемо в нього за допомогою подвійного клацання миші. Значення прапора goEditing зробимо рівним True.

6. Для міток Label1, Label2, Label3 і Label4 установимо властивість Caption рівним 'Функція', 'Введіть масив a', 'х =' і 'y =' відповідно.

7. Для компонентів Edit1 і Edit2 установимо значення властивості Text рівним порожньому рядку.

8. Для компонента Memol виберемо властивість Lines і клацнемо по кнопці з трьома крапками. У вікні, що з'явилося, String list editor видалимо рядок 'Memol'.

9. Кнопці Buttonl установимо властивість Caption рівній «Розв'язання».

10. Для обчислення значення змінної и необхідно два рази знайти значення

наступного виразу $\prod^m \left(\sin^2 z^i - c_i \right)^2\,$, де змінна z перший раз повинна $_{i=n}$

прийняти значення рівне х, а другий раз – у, с повинна прийняти значення масиву а. Нам необхідно передавати масив дійсного типу, який містить 8 елементів у процедуру. Для цього ми повинні написати наступні оператори:

```
Const
n = 8;
type
mas = array [1..n] of real;
```

Назвемо функцію proiz. Вона буде мати чотири вхідних параметри – n, m, z, с. Отже, заголовок функції буде мати вигляд:

function proiz(n, m: integer; z: real; c: mas):real;

Склавши заголовок функції, можна записати програму обчислення результату:

Таким чином, ми склали опис функції. Переключимося з вікна форми у вікно модуля (F12) і наберемо текст функції в розділі implementation модуля.

11. Для того, щоб скористатися функцією, її потрібно викликати з оброблювача події OnClick для кнопки Button1. Наведемо зміст розділу implementation модуля:

```
implementation
{$R *.DFM}
Const
n = 8;
type
mas = array [1..n] of real;
function proiz(n, m:integer;z:real;c:mas ):real; var
i: integer;
```

```
begin
result:= 1;
for i:=n to m do
result:=result*sqr(sqr(sin(power(z,i)))-c[i]);
end;
procedure TForm1.Button1Click(Sender: TObject); var
x, y, w: real;
      i: integer;
       a: mas;
begin
x := StrToFloat(Edit1.Text);
y := StrToFloat(Edit2.Text);
for i := 1 to n do
a[i] := StrToFloat(StringGrid1.Cells[i-1,0]);
w:= proiz(1,5,x,a)+proiz(2,8,y,a);
Memo1.Clear;
Memol.Lines.Add('Результат:');
Memo1.Lines.Add('w = '+FloatToStr(w))
end;
```

12. Збережемо проект за допомогою команди головного меню File|Save All i запустимо його на виконання, використовуючи функціональну клавішу F9.

Примітка: так як у тексті програми була використана функція power, що належить до модуля Math, то необхідно передбачити використання цього модуля, тобто добавити його ім'я після службового слова Uses.

ПРАКТИЧНА РОБОТА №8

Тема: Побудова графіків функцій

1. Мета роботи

Дослідити роботу, призначення, форму запису та особливості вживання функцій мови програмування Object Pascal. Засвоїти методику складання програм на ПЕОМ з використанням графічних функцій.

2. Постановка завдання

Скласти псевдокод та програму мовою Object Pascal відповідно до заданого варіанта. Налагодити та розв'язати задачу на ПЕОМ.

3. Програма роботи

3.1. Записати запропанований викладачем варіант завдання з Додатка 1.

3.2. Ознайомитись з рекомендованою літературою та конспектом лекцій.

3.3. Програмування задачі:

- скласти псевдокод алгоритму;

- скласти програму розв'язання задачі мовою Object Pascal.

3.4. Розв'язання задачі на ПЕОМ.

На ПЕОМ набрати, відлагодити та розв'язати складену програму.

3.5. Оформлення звіту.

Звіт повинен містити:

- номер лабораторної роботи та її назву;

– умову задачі та дані свого варіанта;

– псевдокод програми;

 – лістинг (або рукопис) програми з коментарями до кожної використаної змінної та скриншоти форми проекту;

– результати розрахунку задачі;

– висновки.

Приклад.

Побудувати графік функції y=sin(x) на відрізку [a,b].

<u>Розв'язання</u>

1. Створимо нову папку для проекту.

2. Запустимо Delphi.

3. Зі сторінки Additional Палітри Компонентів розташуємо на формі компоненти Chart1 і CheckListBox1. Зі сторінки Standard Палітри Компонентів розташуємо на формі три компоненти Label, три компоненти Edit, компоненти RadioGroup і Button (puc. 11).

4. Для міток Label1, Label2, Label3 установимо властивості Caption рівними: 'A =', 'B =' і 'N =' відповідно.

5. Для компонентів Edit1, Edit2 і Edit3 установимо значення властивості Text рівним порожньому рядку.

Label3
oGroup1

Рис. 11. Готова форма

6. Кнопці Button1 установимо властивість Caption рівній «Розв'язання».

7. Для компонента Chartl виберемо у вікні Інспектора Об'єктів властивість SeriesList і клацнемо мишею по кнопці з трьома крапками. З'явиться вікно Редактора Діаграм. У багатосторінковому вікні Редактора виберемо сторінку Chart, а на ній – сторінку Series.

8. Клацнемо по кнопці **add**. З'явиться нове вікно, в якому виберемо тип графіка – Line.

9. Клацнемо по кнопці Title і у вікні, що з'явилося, введемо назву графіка – у = sin(x).

10. Перейдемо на сторінку Legend і в полі Legend Style установимо значення Series Names.

11. Перейдемо на сторінку Titles і у вікні багатосторінкового редактора змінимо загальну назву області побудови графіків з TChart на **Графік функції** синус.

12. Закриємо вікно Редактора Діаграм (кнопка Close).

13. У вікні Інспектора Об'єктів для компонента Chartl виберемо властивість View3D і установимо його значення рівним false.

14. Для компонента CheckListBox1 виберемо у вікні Інспектора Об'єктів властивість Items, клацнемо мишею по кнопці з трьома крапками й у вікні, що з'явилося, String List Editor введемо рядок: y = sin(x)

15. Для компонента RadioGroup1 у властивість Items введемо два рядки:

плоске

об'ємне

```
16. Для компонента RadioGroup1 установимо значення
```

```
властивостей: Caption - 'Зображення'
```

```
ItemIndex – 0
```

17. У розділі implementation модуля за директивою компілятора {\$R*.dfm} розмістимо підпрограму-функцію для обчислення синуса:

```
function f1(a: real):real;
begin
result:= sin(a);
end;
```

18. Створимо оброблювач події OnClick для кнопки Button1:

```
procedure TForm1.Button1Click(Sender: TObject); var
x, a, b, h: real;
i, N: integer;
begin
CheckListBox1.Checked[0] := true;
Series1.Clear;
a:=StrToFloat(Edit1.Text);
b:=StrToFloat(Edit2.Text);
```

```
N:=StrToInt(Edit3.Text);
h:= (b-a)/N;
for i:=0 to N do
begin
x:= a+h*i;
Series1.AddXY(x,f1(x), ' ', clRed); end;
end;
```

19. Створимо обробник події OnClick для CheckListBox1:

```
procedure TForm1.CheckListBox1Click(Sender: TObject);
begin
if CheckListBox1.Checked[0] then
Series1.Active := true
else
Series1.Active := false;
end;
```

20. Створимо оброблювач події OnClick для RadioGroup1:

Збережемо додаток і запустимо його на виконання.

Додаток 1. Завдання до лабораторних робіт

Завдання до лабораторної роботи №1 Тема: Лінійний обчислювальний процес

Скласти програму обчислення виразів і виведення отриманого результату на екран. Відповідні вихідні дані ввести з клавіатури.

N⁰	Вираз	Х	у	Z
1	$a = \frac{1 + \sin^2(x + y) \cdot x^{ y }}{\left y - \frac{z}{2}\right } b = \cos^2\left(\arctan\frac{1}{z}\right)$	0,96	-0,4	3
2	$a = e^{x-y} + x-y ^{\cos z}$ $b = \arctan \sqrt[3]{1+y^2}$	1,4	2	0,53
3	$a = \left(1 + tg^2 \frac{z}{2}\right)^{\sqrt{y}} \qquad b = \frac{\cos x}{4 + \sqrt{y}} + \frac{\sin z}{3 + \sqrt{x}}$	0,3	0,7	3
4	$a = \sqrt[5]{\frac{3.4 - \cos z}{ x + y ^{\sqrt{y}}}} \qquad b = 1 + \cos^3\left(\sqrt{x} + 1.3\right)$	1,7	6	0,85
5	$a = 2^{-x} \sqrt{x + \sqrt{ y }}$ $b = \sqrt[3]{e^{-x + \frac{1}{\cos^2 z}}}$	7	2	0,52
6	$a = y^{3/ x } + \cos^2(y-3)$ $b = \frac{\operatorname{arctg}(z)}{ x + \frac{1}{\sqrt{y}}}$	-3	3,8	1,27
7	$a = 0.75\sqrt{x} + 0.5\sqrt[3]{ y } \qquad b = \left(100^{\frac{\ln z}{2}} - 1.6\right)^{tg\frac{1}{3}}$	4	-2,7	1,6
8	$a = \frac{x^{y+1} + e^{y-1}}{1 + \sqrt[3]{ z + 1,6}} \qquad b = 1 + x^2 - z ^{\cos^2 x}$	0,83	5	1,49
9	$a = \frac{1 - \cos(y+2)}{\frac{y}{2} + \sin^{2} z} \qquad b = \frac{ 1+y ^{\cos x} - 1.6}{\sqrt[3]{e^{tg^{2}z}}}$	0,64	2,18	0,85
10	$a = \frac{\sqrt[3]{8 + x - y ^3}}{1 + \ln x} \qquad b = e^{ x - y } (tg^2 z + 1)^x$	1,5	6	0,36
11	$a = \frac{2^{y} + (3+z)^{x}}{e^{ x-y } + 3.6} \qquad b = \frac{ x-y }{1 + \sin^{2} z - e^{x}}$	5,7	2	0,74
12	$a = \sqrt{\frac{2,591 - \sqrt[3]{x}}{y(e^2 + e^z)}} \qquad b = (x+1)^{\frac{-1}{\sin^2 z}}$	1,16	3	0,82
13	$a = \sqrt[4]{y + \sqrt[3]{x + 1}}$ $b = x - y (sin^2 z + tgz)$	5	3	0,74

Продовження таблиці

		110	ogobinem	niuconiq
14	$a = \cos(tgz - arctg y/3, 6) b = (\arcsin z)^2 + x ^3$	7	4,12	0,39
15	$a = \sqrt{\sin^2(\arctan z) + \cos x } b = y^z + \sqrt[3]{ x + y }$	0,79	3	1,85
16	$a = x + \frac{ y - x + z^{2,5}}{\sqrt[3]{z + 1}} b = \operatorname{arctg}(x) - e^{ z - 1 }$	1,14	13	1,73
17	$a = z^{0,5 x+y } + 4\sqrt{\frac{x-1}{z-3}} b = \sin\left(2\operatorname{arctg}\left(\frac{\sqrt{x}}{y}\right)\right)$	2,6	1	9
18	$a = \frac{\cos^{3}(z + y^{4})}{y + l} b = \sqrt[5]{ x^{2} - tg(y) } + arctg(z)$	2	0,17	1,8
19	$a = lg(\sqrt[3]{z} + \sqrt{y} + 3) b = 0,5(x^{ x-y } + y^{3,6})$	2,7	7	1,4
20	$a = \frac{8,15\sqrt[3]{x} \cdot \ln 2}{2,3e^{x} + z} b = \sin\left(\arccos y - \arcsin \frac{1}{3}\right)$	4,2	0,82	5
21	$a = e^{z} - \sqrt[3]{\frac{x+1}{ y -1}} b = \sin\left(\cos\left(\frac{z}{20}\right)\right)$	2,75	1,12	-6
22	$a = \sin^2 x^2 + \frac{\lg y }{\sqrt[5]{z^2}} \qquad b = \frac{2\ln(x+y^2)}{e^{z^2} - \sqrt{x+y^3}}$	0,42	1,12	-2
23	$a = tg^{3}x + \sqrt{\arcsin^{3} y^{2}}$ $b = \sqrt[3]{z^{2}} + z^{4} x^{3} \cos x$	1,37	0,13	3
24	$a = \frac{\lg x}{y^3 + \cos z} + \frac{\operatorname{arctgy} + x}{\sqrt{z+4}} b = \left x - \cos^2 z \right + y$	2	1,53	0,72
25	$a = \ln x^{3} - y^{4} + e^{x}$ $b = \frac{\sqrt[3]{ x + \cos z }}{\arcsin y^{3}}$	1,4	0,7	0,12
26	$a = tgx^{2} + \frac{ctgy}{y + \frac{x^{4} - e^{y}}{\sin z}} \qquad b = \sqrt[4]{\left x - \sqrt{y}\right }$	0,83	0,18	0,64
27	$a = e^{\cos^3 y^4} - \sin(y+z)$ $b = \frac{ctg^2 z - ln x }{\sqrt{\cos y} + 4}$	-2	0,52	0,96
28	$a = \frac{x^3}{\sqrt[3]{\cos^3 y}} + \frac{lgy}{tgz} \qquad b = \sqrt{\frac{\sqrt[3]{x - y}}{arcsin z + 3.6}}$	4	0,75	0,15
29	$a = ctg^{3}y - \sqrt[4]{cos(y+z)} \qquad b = e^{\sqrt[3]{y}} - arctg^{\sqrt{y+z}}z$	0,2	0,95	0,12
30	$a = \sqrt[4]{ctg^{3}(y-1)} \qquad b = \frac{\ln x^{7} - e^{y+z}}{ z-y^{3} + \sin x }$	0,57	1,3	7

Завдання до лабораторної роботи №2 Тема: Розгалужений обчислювальний процес

Скласти програму обчислення виразу і виведення отриманого результату на екран. Відповідні вихідні дані ввести з клавіатури.

№	Вираз	Вихідні дані
1	$j = \begin{cases} \sin(5k + 3m k), & -1 < k < m\\ \cos(5k + 3m k), & k > m \end{cases}$	k = -0,25 m = 0,83
2	$z = \begin{cases} \sin^2 ax, & \pi \kappa \psi o \ a > 0 \ ma \ x > 1 \\ \cos(a + x) - 3, & \pi \kappa \psi o \ a < -2 \ ma \ x < 1 \\ \ln a - x , & ihakwe \end{cases}$	x = 0,5 a = 0,18
3	$t = \begin{cases} \sin x^2 + y, & \text{якщо } x \text{ та } y \text{ протилежні за знаком} \\ \cos xy, & \text{інакше} \end{cases}$	x = 0,76 y = 1,12
4	$l = \begin{cases} \sin^3 k + 2p & \text{якщо } 0 < k < 1 \text{ або } 5 < p < 7 \\ (k+p)^k & \text{інакше} \end{cases}$	k = 0,12 p = 2
5	$t = \begin{cases} a-b , & якщо max(a,b,c) > 2\\ \cos^2(a-c), & інакше \end{cases}$	a = 4 b = 2,5 c = 3,12
6	$c = \begin{cases} x^{2} + y^{2} + \sin(x), & x - y = 0\\ (x - y)^{2} + \cos(x), & x - y > 0\\ (x + y)^{2} + tg(y), & ihakwe \end{cases}$	x = 0,51 y = 1,34
7	$z = \begin{cases} \sin^2(ax), & \text{якщо } a \text{ - парне} \\ \cos(ax^2), & \text{інакше} \end{cases}$	a = 3 x = 0,12
8	$g = min(a^2 + bx, ln b , \sqrt[3]{\cos x^2 + e^b})$	x = 0,6, $a = 7b = 4,2$
9	$t = \begin{cases} \cos^2 x, & \pi \kappa \mu o 5 > \max(a^2, x) > 1 \\ a - \sin^2 x, & i + a \kappa \mu e \end{cases}$	a = -2,15 x = 0,94
10	$W = \begin{cases} \sin^2 ax, & \pi \kappa \psi o \min(a, x) > 0\\ \sqrt{a^3 + 3x}, & \pi \kappa \psi o \ a \ nap \mu e\\ 0, & i \mu a \kappa w e \end{cases}$	a = 8 x = 0,06
11	$k = \frac{max(a,b^2,\sqrt{c}) - min(a,b)}{min(a,b)}$	a = 2, b = -4,32 c = 3,12

Продовження таблиці

12	$(3 \cdot k^3 + 3 \cdot p^2)$, якщо к кратне 3	k = 6
	$l = \begin{cases} ctgk^2 - ln p \\ r & s \kappa щ o \kappa = 4 a fo p = 6 \end{cases}$	p = 1,27
	$\left(k - \sqrt[3]{p}\right)^2$, iнакше	
13	$\left(\sin\left(5\cdot k+3\cdot m\cdot k \right), \max(k ,m^2) > 9\right)$	k = 0,64
	$i = \langle \cos(5 \cdot k + 3 \cdot m \cdot k), k^3 > 3m$	m = 2,41
	k^3 . inakwe	
14	$(max(x,y)) = gy_{\mu}(x,y) = x < 0$	x = 3.86
	$z = \begin{cases} max(x,y), & max(y) \\ min(x,y), & gkmo, x \ge 0 \end{cases}$	y = -7,72
15	$\left(t_{\alpha}(\mathbf{x} + \mathbf{y}) \right)$ grue $\mathbf{x} = 0$	x = 0.87
	$h = \frac{1}{2} $	y = 5,32
	$ \begin{pmatrix} n - \\ (x + y)^2 \end{pmatrix}, n \in \{0, x > y\} $ $ (x + y)^2, \qquad i + a \in \{0, x > y\} $	
16		x = -3.95
	$b = \int ctgy - \frac{\sqrt{x}}{x+y}$, якщо $x > 0$ та y - парне	y = 4
	$\begin{pmatrix} y \\ z \end{pmatrix}^3$	
17	$(x^2 - y)$, inakwe	
17	$k = max(min(x, y), \sqrt{x + y}, \cos^2 x^3)$	x = 0,52, y = 4,13
18	у, якщоа кратне 3	a = 9
	W = {1 – у, якщоа кратне7	y – -4,51
	$\left(e^{-y}, i ha \kappa w e\right)$	
19	$t = \frac{max(x,\sqrt{y}) + max(x,y)}{1 + max(x,y)}$	x = -7,52
	$\min(x^2, y)$	y = 3,79
20	$\left[\frac{i}{a}, \sqrt{a}\right]$ якщо $a < 0$ та i - парне	i = 5
	$l = \begin{cases} 2 & \sqrt{ c }, & integer a construction in the product of t$	a = 7
	$\left(\sqrt{i}\cdot a, i + a \kappa u e\right)$	
21	sin(3m k), якщо $-1 < k < 5$	k = -0.64
	$j = \left\{ cos(5km), якщо min(k,m) > 0 \right\}$	m = 0, 12
	[k ³ , інакше	
22	$z = max(min(a,b),max(a,\sqrt[3]{b}),0)$	a = -4,12 b = 5
23	$f = min(a,x) + min(a^2,\sqrt{x}) + max^2(2a,e^x)$	x = 4,2
		a = 10
24	$t = \int a - x ^b$, якщо $max(a, x, b) > 2$	x = 0.86 a = 2.17
1		
	$arccos^2(a-x)$, інакше	b = 4

Продовження таблиці

25	$z = \begin{cases} \sin^2(a/x), & \text{якщо max}(a,x) > 7 \text{ ma min}(a,x) < 0\\ \ln(ax^2), & \text{інакше} \end{cases}$	
26	$W = \begin{cases} \sin(ay), & якщо a ma y одного знаку \\ \cos(a - y), & якщо a кратне 5 \\ 10^{-y}, & iнакше \end{cases}$	a = 2 y = -3,1
27	$k = \frac{max(min(f,t),q)}{min(f,t,q)}$	f = -6,3, q = 2,83 t = 6
28	$F = \begin{cases} 2ax + a - 10.32 , & \text{якщо min}(a, x) < -3 \\ e^{x} / \sqrt{1 + a^{2}}, & \text{інакше} \end{cases}$	a = 4,12 x = 0,42
29	$h = \begin{cases} max(e^{x}, \sqrt[5]{y}) & якщо \ x - парне \ abo \ y > 0 \\ min(x, y^{2}) & інакше \end{cases}$	$\begin{array}{l} x = 5 \\ y = -6,2 \end{array}$
30	$k = max(min(x, y), \sqrt[3]{x}, y^3)$	x = 3,71, y = 5

Завдання до лабораторної роботи №3 Тема: Циклічний обчислювальний процес

Скласти програму обчислення виразу і виведення отриманого результату на екран. Відповідні вихідні дані ввести з клавіатури.

№	Вираз	Вихідні дані
1	$S = \sum_{i=2}^{7} \left(\frac{(i-1)!}{\cos ix} + \ln x \right)$	x = 0,7
2	$S = \sum_{i=3}^{10} \frac{i! + \cos x}{xi! + tgix}$	x = 0,83
3	$P = \prod_{i=1}^{5} \frac{i! + \sqrt{i! + 1}}{ x - i! }$	x = 17
4	$S = \sum_{i=1}^{5} \frac{y^{2}(i+1)! + x}{(x+1)(i+1)!}$	x = 0,01 y = 0,8
5	$P = \prod_{i=2}^{5} \left(\cos^2 ix - \sin x^2 \right) (i-1)!$	x = 0,9
6	$S = \sum_{i=1}^{7} \left(\sqrt{i! + y} - z^i \right)$	y = 8 z = 2
7	$S = \sum_{i=5}^{15} \frac{i! - 0.576}{i! + \ln i!}$	
8	$P = \prod_{t=3}^{6} (-1)^{t-1} \frac{(t-1)! + \sqrt[5]{t^2 + x}}{e^t + t^2}$	x = 2,7
9	$S = \sum_{k=2}^{15} (-1)^k \frac{k^2}{k! - 1} \cos(xk!)$	x = 0,09
10	$P = \prod_{t=1}^{4} e^{t!/5} \frac{2}{e^t + t!}$	
11	$z = \sum_{j=1}^{5} \frac{A}{A^{(j+1)!} + B} ((j+1)! - AB)$	A = 0,8 B = 2,3
12	$P = \prod_{k=1}^{6} \frac{e^k}{(k+1)!} \arctan^2 k$	
13	$P = \prod_{t=2}^{5} (-1)^{t-1} \frac{t! + x^2}{tg^2 x^3 - xt!}$	x = 0,9
14	$S = \sum_{i=2}^{7} x^{(i-1)!} \left(\cos^2 x^6 + i^2 \right)$	x = 0,4
15	$S = \sum_{n=1}^{10} (-1)^{n+1} \frac{2n! - 1}{2n!} x^{2n!}$	x = 0,27

Продовження таблиці

	•	тродовжения таозиц
16	$z = \sum_{i=1}^{5} (-1)^{i!} (x+a)b$	x = 2,1
	$z = \sum_{i=1}^{n} (-1)^{i} \frac{1}{b^{2} - (x+a)^{x}}$	a = 0,4
		b = 0,8
17	$E = \sum_{i=1}^{5} (\sin a^2 + \cos^2 b) (i - 1) I$	a = 0,6
	$F = \sum_{i=3} (\sin a + \cos b)(i-1)!$	b = 0,72
18	$p = \prod_{i=1}^{9} (i+1)! + lni$	
	$P = \prod_{i=2}^{n} (-1) \frac{1}{i^2 - (i+1)!}$	
19	$S = \sum_{i=1}^{5} u^{-i} i! + cos(ix)$	x = 0,92
	$S = \sum_{i=1}^{n} x \frac{1}{x^3 + \cos x}$	
20	$\frac{1}{2}$	x = 4
	$P = \prod_{i=1}^{3} \left(\frac{x + y^{2}}{x + y^{2}} + z^{5} \right)^{3} (k - 1)!$	y = 0,2
	$\int \prod_{k=2}^{n} \left(ctgy^2 \right)^{(n-1)} dx$	z = 0,07
21	$\sim \frac{4}{5} \left(t + t + t - \frac{1}{2} \right)^2$	x = 0,5
	$S = \sum_{t=1}^{\infty} \left(\ln x^{t} - x^{t} - \sqrt{x^2} \right)$	
22	$a = \sum_{i=1}^{7} -i (i-1)!$	x = 0,8
	$S = \sum_{i=3}^{n} x^{i} \frac{1}{i^{2} + \sin^{2} x}$	
23	$\frac{6}{1+lg t-x }$	x = 0,4
	$P = \prod_{t=3}^{n} (-1)^{t} \frac{3!}{y^{2} + \ln y - t }$	y = 7
24	$\frac{5}{2}$ (2 2 2	x = 0.8
	$S = 10\sum_{i=1}^{\infty} x^{i} \left(\cos x^{2} + i! \sin^{2} x\right)$	
25	$5(i) -i)^{i+1}$	x = 0,9
	$S = \sum_{i=2}^{n} (x^{i} + y^{-i}) i!$	y = 2,1
26	8 ();	x = 0.83
20	$S = \sum_{i=1}^{N} \left(\sqrt{i} + x^{(i+1)!} - \cos^2 x^3 \right)^{i}$	A 0,05
27	$\frac{9}{3}\sqrt{i}-\sqrt{i'}$	x = 1,2
	$P = \prod \frac{\sqrt{r}}{r}$	v = 0.2
	$_{i=2} lgx^{-} - y$	
28	$5 = k \sqrt[5]{x+k!}$	x = 0,5
	$S = \sum_{k=2}^{\infty} k^{\kappa} \frac{1}{\ln k + k!}$	
29	$e^{i} + (i-1)!$	
	$S = \sum_{i=2}^{n} (i-1)! \frac{1}{i^2}$	
30	$r = \frac{5}{10} t [-(t+1)! lna$	a = 3,2
	$P = \prod_{t=1}^{n} \sqrt{a} \frac{1}{(t+1)^{t+e^a}}$	

Завдання до лабораторної роботи №4 Тема: Одновимірні масиви

0		•	•	
(кпасти прог	namy oonooki	и масиву вілг	ювілно л	ОЗАВЛАННЯ
CRitacin inpor	puny oopoon	а масты віді	юыдно д	o Subdamin

		Тип	
No	Довжина	елементів	Завлання до дабораторної роботи №4
512	масиву	масиву	
1	10	integer	У масиві знайти максимальний і мінімальний
		0	елементи
2	11	real	У масиві знайти суму максимального і мінімального
			елементів
3	12	char	У масиві знайти індекс мінімального елемента
4	10	real	У масиві записати замість від'ємних елементів нулі
5	11	integer	У масиві знайти середнє арифметичне парних
			елементів масиву
6	9	real	У масиві замінити всі елементи що стоять на парних
			місцях, максимальним значенням масиву
7	11	char	У масиві знайти суму індексів мінімального і
			максимального елементів
8	9	integer	У масиві знайти кількість елементів кратних 3
9	12	integer	У масиві знайти добуток індексів максимального і
			мінімального елементів
10	14	real	У масиві замінити від'ємні елементи максимальним
11	13	integer	У масиві знайти суму елементів що стоять на парних
			місцях
12	10	real	У масиві знайти різницю між максимальним і
			мінімальним елементами
13	14	real	У масиві знайти мінімальний елемент і поміняти
			його місцями з останнім елементом
14	11	integer	У масиві знайти кількість елементів, які більші ніж
			перший
15	12	real	У масиві переставити місцями мінімальний і
			максимальний елементи масиву
16	10	real	У масиві переставити місцями мінімальний і
		-	останній елементи масиву
17	13	integer	У масиві знайти добуток елементів що стоять на
			непарних місцях і не рівних нулю
18	14	real	У масиві визначити добуток негативних елементів
			масиву
19	516	real	Знайти максимальний елемент із двох масивів X(5) і
	0.0	• .	Y(6)
20	818	integer	Знаити масив, що є сумою двох одномірних масивів $A(8)$ і $D(8)$. Визнання макання макання спользи
			А(о) і бол. бизначити максимальний елемент
			отриманого масиву

Продовження таблиці

21	10	real	У масиві записати замість першого елемента масиву	
			суму від'ємних елементів цього масиву	
22	9	real	У масиві замінити максимальний елемент середнім	
			арифметичним елементів масиву	
23	12	integer	Переписати в другий масив підряд всі елементи	
			вихідного масиву, кратні 7	
24	14	integer	У масиві підрахувати кількість непарних елементів	
			масиву, що задовольняють умові 4 <xi≤13< td=""></xi≤13<>	
25	15	integer	Переписати в один масив підряд усі парні елементи	
			вихідного масиву, а в іншій – усі непарні	
26	10	real	У масиві визначити суму додатних і суму від'ємних	
			елементів масиву, і записати ці суми замість	
			першого й останнього елементів масиву відповідно	
27	9	real	У масиві знайти елементи, що перевищують середнє	
			арифметичне масиву	
28	12	char	У масиві визначити кількість символів "А", які	
			входять до заданого масиву	
29	10	integer	У масиві визначити максимальний за модулем	
			елемент і замінити його нулем	
30	12	real	У масиві замінити кожен елемент результатом	
			ділення його на середнє арифметичне	
			максимального і мінімального елементів	

Завдання до лабораторної роботи №5 Тема: Двовимірні масиви

N⁰	Розмірність	Тип елементів	Завдання до лабораторної роботи №5
	масиву	масиву	
1	A [3 x 3]	integer	У матриці знайти мінімальні елементи по
		C	стовпцях
2	A [5 x 5]	char	У матриці поміняти місцями І і IV рядки
3	A [5 x 3]	real	У матриці знайти максимальні елементи по
			рядках
4	A [3 x 4]	integer	Знайти суму матриць А і В, елементи якої
	B [3 x 4]		обчислюються за формулою с _{ij} =a _{ij} +b _{ij}
5	A [5 x 3]	real	У матриці знайти кількість від'ємних елементів
			кожного рядка
6	A [2 x 4]	real	Переписати елементи матриці А в матрицю В,
	B [2 x 4]		заміняючи від'ємні елементи нулями
7	A [4 x 3]	integer	У матриці знайти середнє арифметичне елементів
			кожного стовпця
8	A [4 x 4]	integer	Знайти середнє арифметичне від'ємних елементів
			матриці
9	A [2 x 3]	integer	Поміняти місцями І і ІІ стовпці матриці
10	A [3 x 3]	real	Визначити в скільки разів тах елемент II стовпця
			більше min елемента III рядка
11	A [2 x 4]	char	У матриці поміняти місцями max і min елементи
12	A [3 x 4]	real	У матриці знайти добуток елементів II і IV
			стовпців
13	A [4 x 4]	real	У матриці замінити нульові елементи сумою max і
			min елементів
14	A [5 x 2]	integer	У матриці знайти модуль різниці min і останнього
			елементів
15	A [6 x 3]	integer	У матриці замінити від'ємні елементи тах
16	A [3 x 3]	real	У матриці знайти середнє арифметичне кожного
			стовпця
17	A [2 x 3]	integer	Порівняти матриці поелементно і вивести на друк
	B [2 x 3]		однакові елементи
18	A [4 x 5]	integer	Знайти суму додатних елементів матриці
19	A [2 x 3]	real	У матриці знайти максимальні елементи по рядках
			і обчислити їх суму
20	A [3 x 2]	real	У матриці знайти кількість нульових елементів
21	A [3 x 3]	integer	Знайти суму елементів головної діагоналі матриці
22	A [5 x 2]	char	У матриці замінити елементи другого рядка min

Скласти програму обробки масиву відповідно до завдання

Продовження таблиці

23	A [2 x 3]	real	У матриці знайти суму максимальних елементів
			першого і другого рядків
24	A [3 x 3]	integer	Вивести на друк індекси min елемента матриці
25	A [4 x 3]	real	Замінити кожен елемент матриці результатом
			розподілу його на тах
26	A [2 x 4]	integer	Знайти суму елементів кожного стовпця
27	A [2 x 4]	real	Знайти добуток елементів ІІ і ІV стовпця
28	A [3 x 3]	integer	У матриці замінити тіп елемент одиницею
29	A [3 x 5]	real	У матриці знайти добуток ненульових елементів
			кожного рядка
30	A [4 x 3]	char	У матриці визначити кількість символів «Z»
			вхідних у заданий масив

Завдання до лабораторних робіт №6 і №7 Тема: Процедури та функції

Скласти програму обчислення виразу і виведення отриманого результату на екран. Відповідні вихідні дані ввести з клавіатури.

№	Обчислити значення виразу	Вихідні дані
1	$z = f(a,b) + f(a^{2},b^{2}) + f(a^{2} - l,b) +$	a=2,5
	$f((a-b)^2,(a+b)^2),\partial e$	b=-7,3
	$f(u,t) = \begin{cases} u^2 + t^2, & \text{якщо} & u > 0 \text{ ma } t < 0 \\ 2 & u < 0 \end{cases}$	
	$\left[u^{2}+t, i hakwe\right]$	
2	$z = f(\sin\alpha, a) + f(\cos\alpha^2, b^2) + f(\sin(\alpha^2 - 1), a) +$	$\alpha = 0.18$
	$f((a-\alpha)^2,(a+\alpha)^2),\partial e$	b=1,25
	$f(u,t) = \begin{cases} u + \sin(t^2), якщо \max(u,t) > 0 \end{cases}$,
	$\cos(u^2)$, <i>iнакше</i>	
3	$z = f(\sqrt{x}, y) + f(a^2, b^2) + f(a^2 - I, b) +$	a=3,11
	$f(y(a-b)^2, x(a+b)^2), \partial e$	x=2,31
	$\left\{u^2 + 6t\right\}$ armo $u > t$ abo $t = 4$	y=4,2
	$f(u,t) = \begin{cases} u^{2} + 0t, & \text{исць } u > t \text{ цоб } t = 4 \\ u^{2} + 2t + 5, \text{ інакше} \end{cases}$	
4	$(ax^{10} + a^2x^9 + + a^{10}x)^2 - (by^{10} + b^2y^9 + + b^{10}y)^2$	a=0,25, b=1,5
	$u = \frac{1}{\sqrt{(x+z)^{10} + v^2(x+z)^9 + + v^{10}(x+z)}}$	x=0,831, y=1
		2-0,791
5	$u = \sum_{i=1}^{10} x^{i} v^{10-i} + \sum_{i=1}^{5} (x - v)^{i} z^{10-i}$	x=1,25, y=0,78
	$u - \sum_{i=1}^{x} x y + \sum_{i=2}^{y} (x - y) =$	z=0,791
6	$\min(a,b,c) = \min(c,a^2,(b-c))$	a=0,25
	$\frac{1}{\min(a^2,b,c)} - \frac{1}{\min(\max(a,b^2),b^2,c)}$	b=1,31
7	$max(min(a,b,c),b,c^2)$ (2)	a=0.28
	$t = \frac{max(mm(a,b,c),b,c^{-})}{max(a,b,c^{2})} + max(a^{2},b,c^{2}-b)$	b=2,35
	max(a,b,c)	c=-3,51
8	$W = \prod_{i=1}^{10} \left(\sin^2 x^i - 1 \right)^2 + \prod_{i=1}^{8} \left(\sin^2 y^i - 1 \right)^2$	x=0,78
	i=1 $i=2$	y=1,87
9	$W = \prod_{i=1}^{10} \left(\sin^{i} x + v^{10-i} \right) - \prod_{i=1}^{7} \left(v^{i} - (xv)^{10-i} \right)$	x=0,591
	$\begin{array}{c} 1 1 1 1 1 1 1 1$	y=0,35
10	$Z = min(U + V^2, 3.14), \partial e \qquad U = min(a, b),$	a=3,581
	V = min(ab, a+b)	b=-7,53

Продовження таблиці

11	$Z = max(7.31, U^2, V - 1), \partial e U = max(a, b, c),$	a=7,31
	$V = max(a + b^2 - a + b)$	b=8,72
	v = max(u = b, b (c = b))	c=-3,591
12	$Z = \frac{max(a, a+b) + max(a, b+c)}{max(a, b+c)}$	a=-0,5
	1 + max(a + b, c - 1.5)	b=1,31
10	\mathbf{z} (\mathbf{z} (\mathbf{z}) \mathbf{z} (\mathbf{z})	c=0,781
13	$Z = (sign(x) + sign(y)) \cdot sign(x + y) \cdot y$	x = -1, 5
14		y=3,81
14	$Z = \left(\sum_{i=1}^{10} x_i - \sum_{i=5}^{10} x_i\right) / \sum_{i=3}^{5} x_i$	$x_i = (3, 2, 5, 7, 8, 1, 7, 9, 4, 6)$
15	$\left(\begin{array}{ccc} 10 & 2 & 9 \\ \Sigma & 2 & \Sigma \end{array} \right) \left \left(\begin{array}{ccc} 9 & 5 \\ \Sigma & 5 & 2 \end{array} \right) \right $	$x_i = (7, 2, 1, 5, 0, 3,$
	$Z = \left(\sum_{i=1}^{n} x_i^{-} - \sum_{i=5}^{n} x_i\right) / \left(\sum_{i=2}^{n} x_i^{-} - \sum_{i=1}^{n} x_i^{-}\right)$	2, 6, 9, 8)
16	$U = n! \cdot m! / (n+m)!$	n=5, m=7
17	I I n I T	n=10
	$U = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} y_i + \sum_{i=3}^{n} y_i}$	$y_i = (1, 5, 3, 2, 7, 8,$
10		4, 6, 0, 9)
18	$U = \left(C_{10}^{3} + C_{7}^{2}\right) / C_{12}^{3}, \qquad \partial e \qquad C_{n}^{j} = \frac{n!}{j!(n-j)!}$	
19	$U = \sum_{i=1}^{8} C_{i}^{i} e^{\frac{g}{2} - ihi} a = C_{i}^{i} = \frac{n!}{2}$	a=1,581
	$U = \sum_{j=1}^{n} C_{j}^{*} a^{-*} b^{*}, \partial e^{-*} C_{n}^{*} = \frac{1}{j!(n-j)!}$	b=0,875
20	$t = \left(\sum_{i=1}^{30} a_i - \sum_{i=5}^{30} a_i\right) / \left(\sum_{i=10}^{30} a_i - \sum_{i=15}^{30} a_i\right), \partial e a_i = \sin \frac{i^2 + 1}{30}$	
21	$t = max \sqrt{(x_i - x_i)^2} + max \sqrt{(y_i - y_i)^2}$	i=110
	i i i i i i i	k=7
	$x_i = \sin \frac{i^2 + 1}{30}, y_i = \cos \frac{i^2 + 1}{30}$	
22	$z = f(a,b) + f(\sqrt{a},b^{2}) + f(a + \sqrt[3]{b},b - a)$	a=0,65
	$\left[u + \sin(t), якщо u < 0 \text{ mamin}(u + t, \sqrt{ t }) < 0\right]$	0-2,15
	$f(u,t) = \left\{ \left t^2 - \sqrt[3]{u^2} \right , \ \text{якщо } u > t \right. \right\}$	
		0.501
23	$W = P(a^{2}) + P(a+1)$, $z \partial e P(a) = \sum_{i=1}^{10} p_{i} a^{i}$	a=0,721
	$\sum_{i=1}^{n} p_i a_i$	$p_i = (1, 3, 5, 7, 0, 4, 0, 1, 2, 0)$
		(0, 1, 2, 0)

	Π	родовження таблиці
24	$\sqrt{\min(x, y)} + \max^2(x^2, \sqrt[3]{(y+1)^5})$	x=0,951
	$V = \frac{\sqrt{(max(sin(x) \ln y^2))}}{(max(sin(x) \ln y^2))}$	y=2,7
	$\min\left(\frac{\max(\sin(x), \sin(y))}{x+y}, y^2 - 3\right)$	
25	W = Q(x) + Q(x+5),	x=0,581
	$ede Q(x) = \sum_{i=1}^{12} \frac{q_i x}{i}, q_i = \frac{i^2 - 1}{12}$	
26	$t = \min_{i} \sqrt{(x_{i} + x_{k})^{2}} + \min_{i} \sqrt{(y_{k} - y_{i})^{2}},$	$\begin{array}{l} x_i \!\!=\!\!(3,2,5,2,0,3,\\ 2,6,9,5) \end{array}$
	$x_i = \frac{i^2 + 1}{30}, y_i = ln(i^4)$	k=3
27	$T = m(a^{2}, b - a, \cos^{2} c^{3}) + m^{2}\left(\frac{a+c}{2}, c, e^{b+1}\right) -$	a=3,61 b=0,82
	$\sqrt{m(a,b,c)},$	c=0,05
	$m(x, y, z) = \int max(x, y, z), якщо x + y > z$	
	$m(x, y, z) = \begin{cases} min(x, y, z), & i + a \kappa we \end{cases}$	
28	$t = \min_{i} \sqrt{(x_i + x_k)^2} + \min_{i} \sqrt{(y_k - y_i)^2} + \min_{i} \sqrt{(x_i + y_i)^2},$	i=115 k=5
	$x_i = \frac{i^2 + 1}{30}, y_i = \frac{30}{i^2 + 1}$	
29	$t = \left(\sum_{i=3}^{12} a_i - \sum_{i=5}^{10} a_i\right) / \left(\sum_{i=2}^{20} a_i + \sum_{i=1}^{17} a_i\right), de a_i = lg \frac{i^2 + 1}{30}$	
30	$Z = \left(\sum_{i=1}^{10} (x_i^2 + 1) + \sum_{i=2}^{8} x_i\right) / \left(\sum_{i=2}^{9} 4x_i - \sum_{i=1}^{5} x_i^2\right)$	$ \begin{array}{c} x_i \!\!=\!\!(5,\ 7,\ 5,\ 9,\ 3,\ 3, \\ 2,\ 6,\ 9,\ 4) \end{array} $

Завдання до лабораторної роботи №8 Тема: Побудова графіків функцій

No	Функція	Δ	B	М
1	$\frac{1}{2}$	0	20	10
2	$\frac{x+10}{\sqrt{x+1}}$	0,1	1	17
3	sin(x) + cos(x)	0	2π	12
4	lnx	0.01	1	10
5	e ^{-x}	0,02	1,5	15
6	$\frac{1}{1+e^x}$	0,1	1,1	10
7	sin x + sin 2x	0	2π	9
8	$\cos x + \cos 3x$	0	2π	12
9	$1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3}$	1	14	13
10	$x^{3} + 1$	-1	1	6
11	$\left(\frac{l}{2}\right)^{x} + \left(\frac{l}{3}\right)^{x}$	0	21	7
12	$ln \frac{l}{x}$	0,7	0,5	9
13	\sqrt{x}	100	300	100
14	$\sqrt[3]{x}$	100	200	10
15	arcsin x	-1	1	15
16	arccos x	0	1	12
17	$(-1)^x \sin x$	1	10	9
18	2^x	1	11	9
19	tgx	0	π/2	8
20	ctgx	-π/4	π/4	8
21		-3	3	30
22	$sin x \cdot cos x$	0	2π	8
23	$\sqrt[3]{\sin x}$	0	1	15
24	$x^{2} + 4$	-5	5	9
25	x ^{sinx}	0	π	20
26	$sin x \cdot tgx$	π	2π	5
27	$\cos x + \arccos x$	0	1	10
28	$\sqrt{x^2 + 1}$	-10	10	15
29	$\sqrt{x+2x}$	1	5	7
30	$\sin^2 x + x$	0	5	12

Побудувати графік функції F(x) на відрізку [A, B] в точках і=0,1,2...М. Відповідні вихідні дані ввести з клавіатури.

- 1. Юрченко І. В. Інформатика та програмування. Частина 1. Навчальний посібник. / І. В. Юрченко. Чернівці : Книги– XXI, 2015. – 203 с.
- 2. Юрченко І. В. Інформатика та програмування. Частина 2. / І. В. Юрченко, В. С. Сікора. – Чернівці : Видавець Яворський С.Н., 2015. – 210 с.
- 3. Семенюк А. Д. Програмування: практикум / А. Д. Семенюк, Ф. О. Сопронюк. – Чернівці : Рута, 2017. – 143 с.
- 4. Фаронов В. В. Delphi. Программирование на языке высокого уровня / В. В. Фаронов. СПб. : Питер, 2016. 640 с.
- 5. Гофман В. Э. Delphi 7 / В. Э. Гофман, А. Д. Хомоненко. М. : Питер, 2008. – 1145 с.
- 6. Культин Н. Б. Delphi 7. Программирование на Object Pascal / Н. Б. Культин. М.: Питер, 2009.– 526 с.
- Руденко В. Д. Базовий курс інформатики / за заг. ред. В.Ю.Бикова. – К. : ВНV, 2013 – Кн. 1: Основи інформатики. – 320 с.
- Симонович С. Практическая информатика: универсальный курс / С. Симонович, Г. Евсеев. М. : Инфорком–Пресс, 2014. 480 с.

Навчальне видання

Прикладне програмування Метолиции рекомендації

Методичні рекомендації

Укладач: Волосюк Юрій Вікторович

Формат 60х84 1/16 Ум. друк. арк. 1,6. Тираж 30 прим. Зам. №____

Надруковано у видавничому відділі Миколаївського національного аграрного університету. 54020 м. Миколаїв, вул. Георгія Гонгадзе, 9

Свідоцтво суб'єкта видавничої справи ДК № 4490 від 20.02.2013 р.