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ABSTRACT 

In the linear formulation, the frequency equation of the natural oscillations of a rectangular plate and a 

liquid is derived. The plate horizontally separates ideal incompressible fluids of different densities in a 

rectangular channel with rigid bases. It is shown that for clamped, supported and free contours it splits into 

two equations describing even and odd frequencies and can be written in a unified form for these 

frequencies. If the contours of the plate have different fixing, then the frequency equation no longer splits 

into even and odd frequencies. The greatest simplification of the frequency equation was achieved for the 

case of clamped contours. For this case, the previously obtained approximate conditions for the stability of 

plate and liquid oscillations are refined. It is shown that for asymmetric frequencies the approximate value 

of the critical dimensionless stiffness is 0.952 times lower and 0.930 times for symmetric ones.  

Keywords: hydroelasticity, rectangular plate a, ideal incompressible liquid, plane oscillations, stability. 

INTRODUCTION  

On the basis of a single Lagrangian approach, the 

problem of the oscillation and stability of an elastic 

rectangular plate between ideal liquids of different 

density in a rigid rectangular channel was 

apparently studied at first in the article [1] and in the 

monograph [2]. In the article [3] this problem was 

studied on the basis of the Lagrange-Eiyler 

approach. The most complete study of free 

vibrations of a membrane on the free surface of a 

liquid in a rectangular channel was carried out in the 

article [4]. In works [5, 6] this problem was 

generalized for the case of a two-layer liquid with 

membranes on free and inner surfaces, and in the 

article [7] for the case of an elastic bottom. The 

most general investigations of the oscillations of a 

reservoir with a liquid on the free surface of which a 

plate or a membrane are located was carried out in a 

monograph [7]. The recent works should be noted 

under the number [9-14]. In articles [15-16] the 

problem of axisymmetric vibrations of an elastic 

membrane which separates a two-density liquid in a 

rigid circular cylindrical reservoir with reference to 

modern capillary fluid systems  is studied. 

 

FORMULATION OF THE PROBLEM 

Let us examine the plane vibrations of an elastic 

rectangular plate which horizontally separates ideal 

incompressible fluids of density 
i  ( 1,2i  ) in a 

rigid rectangular channel of width 2a . The plate has 

a constant flexural rigidity D  and has to tensile 

intensity forces T in the middle surface. The 

contours of the plates have an arbitrary fixing, e.g., 

be clamped,  supported or free. The upper density 

liquid
1  fills the vessel to the depths of 

1h , and the 

lower density liquid 
2  goes to the depth of 

2h . We 

arrange the coordinate system Oxyz the way that the 

plane Oxy  lies on the unperturbed middle surface of 

the plate, the axis Oy  is directed along the channel, 

and the axis Ozg  is opposite to the acceleration 

vector of gravity g . The vibrations of a plate and a 
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liquid will be considered in a linear formulation, 

assuming the joint vibrations of the plate and liquid 

are non-disruptive, and the motion of the fluids is 

potential. 

The joint vibrations of the elastic plate and the 

liquid can be written in the following system of 

integro-differential equations, boundary conditions 

and conditions for keeping  the volume of the liquid 

[11-13] 
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Here 
0 0 0k h ; ( , )W x t , 

0 , 
0h
 
is normal deflection, 

density and thickness of the plate; 
2 1     ;  

2 2 1 1Q Q Q   , 
iQ  is arbitrary time functions;  n x

and 
nk are the eigenfunctions and corresponding to 

them eigennumbers of the oscillations of an ideal 

fluid in a rectangular channel,    cosn nx k x a   , 

2nk n a , 2 2

a

n n

a

N dx a


  ; 
1 1 2 2coth cothn n na      , 

in i nh k  ; 
1jL  and 

2jL  are the differential operators 

of the boundary conditions of fixing the plate on the 

contour j ( 1,2j  ). For example, for the most 

interesting case  a plate clamped around the contour 

the operator 
1jL will be a single operator, but

2 d dj xL . For the convenience of writing, the 

designation of contours is introduced via j  (the 

index 1j   corresponds to the contour x a  , and 

2j   - x a ). 

  

EIGER-FREQUENCIES OF JOINT 

VIBRATIONS OF AN ELASTIC PLATE AND 

A LIQUID 

To find the natural frequencies of joint oscillations 

of an elastic plate and a liquid, we set 

    0, e , ei t i tW x t w x Q C   .  (5) 

Substituting (5) into (1) - (2), into the boundary 

conditions (3) and conditions (4), we obtain 

4 2 2
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Here 
2
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g kT

P q
D D
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  ( 0D  ), 0C

C
D

 . 

We shall seek a general solution of the equation (6) 

in the form of a general solution of the 

homogeneous equation and a particular solution of 

the inhomogeneous one [7] 
4

0 0
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1 1

k k n n

k n

w A w C w
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where 0

kw  ( 1,4k  ) a fundamental system of 

solutions of the homogeneous equation 
4 0 2 0

0

4 2
0k k

k

d w d w
P qw

dx dx
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Here 0

kA  and 
nC  и 0w  are unknown constants. 

Substituting (10) into (6), and using the relations 
2 4
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Substituting (10) into (7), we obtain nw  
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The final expression for the shape of the plate 

deflection w , will take the form 
04
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We have four linear homogeneous equations 

according to 0

kA  from the boundary conditions for 

fixing the plate (9) 
4
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Here            0 0 0

j

jpk jp k kw w


   L L ,   
j

jpn jp n


L L , 

2 2

n n

n

n n n n n n

a a

a k d a k d


 
 

 
. 

When the equality of the determinant of the 

homogeneous system (13) is zero, the frequency 

equation of the natural joint oscillations of the 

elastic plate and liquid follows [11-12] 

4

0
, 1

qkC
q k




,  (14) 

where            

0 2 0

1

pk jpk n kn jpn

n

C E 



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1
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C E 






  L L  

( 2, 1,2; 1,4)j p k   .    (15) 

Using the expansion of the functions 0

kw  in a series 

by the full and orthogonal system of functions n , 

the equation (14) and ratio (15) can be rewritten as 

4

0
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qkC
q k



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Thus, the problem under consideration has an 

infinite discrete spectrum of eigenvalues which are 

the roots of the frequency equations (14) and (16), 

and the corresponding eigenfunctions  lw x form a 

complete orthogonal system of functions on the 

interval  ,a a .  

It should be noted that for certain ratios of the 

parameters of a mechanical system, the frequency 

equations may not have positive roots, i.e. the flat 

form of equilibrium of an elastic plate can be 

unstable. It will be shown later that, with natural 

stratification 1 2  , the frequency equations always 

have positive roots. Instability can occur only if the 

natural stratification is violated, i.e. under condition

2 1   . 

For the clamped, supported and free edges, the 

operators 
jpL and constants

jpnL  take the 

corresponding form: 

1 2

d
1,

d
j j

x
 L L , 11 1n L ,  21 1

n

n  L , 12 0n L ,
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d
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d
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x
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12n nk L ,  
1 2

22 1
n

n nk


 L ,  

   (17) 
2 3

1 22 3

d d
,

d d
j j

x x
 L L , 2

11n nk L ,  
1 2

21 1
n

n nk


 L , 

12 0n L , 22 0n L . 

The coefficient of hydroelastic coupling 0

knE has a 

large effect on the frequency equations (14) and 

(16). It depends on the fundamental system of 

solutions of the homogeneous equation (11), i.e. 

from functions 0

kw , which in turn depend on the 

expressions P and q . However, regardless of the 

type of functions 0

kw , the coefficients 0

knE  ( 1,4k  ) 

will look like: 

   0 0

2 1 2 1 2 1 2 11 1 , 1 1
n n

r n r n r n r nE k E k   
        
   

,( 1,2r  )                                                              

(18) 

Making out the transformation with the rows and 

columns of the determinant of the frequency 

equation (16), taking into account relations (17) - 

(18), we can bring it to a block form and show that 

for clamped, supported and free contours, it splits 

into two equations describing the even ( 2n m ) and 

odd ( 2 1n m  ) frequencies and can be written in a 

single form for these frequencies. 

If, for example, one contour is clamped and the 

second one is supported, then in this, and in the 

other different cases of fixation of two plate 

contours, the frequency equation does not break up 

into even and odd frequencies. 

The greatest simplification of the frequency 

equation (16) can be achieved in the case of 

clamped is  contours. In this case, this equation 

splits into even and odd frequencies and can be 

written in a unified form for these frequencies 

2
1

0n

n n n n

k

a k d








                   (19). 

When the plate degenerates into the membrane 

( 0D  ), the frequency equation for the joint 
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vibrations of the membrane and liquid has the form 

(19), if it is 2

n nd Tk g    . 

The left side of the equation (19) is a monotonically 

increasing function of the parameter 2 on the 

interval    1 1 1, 1,2,...n n n n n nk d a k d a n    , taking on it 

values from   to  . Consequently, between two 

successive values n n nk d a lies only one root of the 

equation (19). The intervals determine in advance 

where the natural frequencies are located. 

 

STABILITY OF VIBRATIONS OF AN 

ELASTIC PLATE SEPARATING LIQUIDS OF 

DIFFERENT DENSITY 

If we retain two terms in the series of the equation 

(19), then the inequality 2 0   implies the stability 

condition for the plate oscillations 1 2 0d d  . For 

odd and even forms of oscillation, it will take the 

form [11-13] 

      
  2

1 22

2 2

4
2.05

5

g aD
T

a

 





  ,   ( 1,3n  ),               

(20) 

  2

1 22

2 2

2
3.4

5

g aD
T

a

 





  ,   ( 2,4n  ).  

 (21) 

The stability conditions (20) - (21) do not depend on 

the filling depths of liquids and the mass of the plate. 

From these conditions it is obvious that for the 

stability of asymmetric oscillations, much greater 

values of stiffness and pre-tension values are needed 

than for symmetric ones. Inequalities (20) - (21) can 

be specified with allowance for three or more terms 

of the series, but it will be necessary to use the 

conditions for the positivity of the roots of the 

polynomials n degree, which will greatly complicate 

the analytical studies. It follows from conditions (20) 

- (21) that under natural stratification ( 1 2  ) the 

frequency equation (19) always has positive roots 

and the plate oscillations are stable. Instability can 

occur only if 1 2  . The above inequalities (20) - 

(21) coincide with the inequalities obtained in the 

presence of a free surface for the upper fluid in [3] 

and where 0T  with the inequalities of works [1, 2]. 

To find the critical values of the mechanical 

parameters at which the loss of stability occurs in 

the frequency equation (19), we set 2 0   and it 

takes the form 

 2 2
1

1
0

n n nDk T k g 






  

 .  (22) 

It is seen from the equation (22) that when 0   it 

has no solutions, in this case the mechanical system 

will always be stable. Instability can occur only 

when 0  . 

In the case of dimensionless variables when 0T   

the equation (22) can be written as follows 

4 4
1

1
0

n n 








 ,   (23) 

where  
4

4

4

16
0

g a

D







     ( 0  ). 

The numerical series 
4 4

1

1

n n 



 
  for odd and even 

values n  can be presented as follows: 

 
4 34

1

tan tanh
1 2 2

82 1m m

 











 

 ,   (24) 

 
4 44

1

cot coth 4
1 1 2 2

82k m

 
 







 

 


 .  (25) 

The first root of the equation (23) with 2 1n m  , 

taking into account (24), has the form

3.926602312
2


  from which follows the following 

exact condition of stability 

  4

1 20.0042066D g a   .  (26) 

The approximate value of the stability condition, 

written out from condition (20) where 0T   and 

2 1n m  , will be written this way  

  4

1 24

0.39024439
=D g a 


   

                     4

1 2=0.00400624g a  .  (27) 

The stability condition in (26), obtained for 

nonsymmetric frequencies, refines the previously 

obtained condition (27). From these inequalities 

follows that the approximate value of the critical 

tension is 0.952 times lower. 

The first root of the equation (23) with 2n m , 

taking into account (25), has the form

5.2676575303
2


  from which follows the following 

exact condition for stability 

  4

1 20.00129876D g a     (28) 
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The approximate value of the stability condition, 

written out from the condition (21) when 0T   and 

2n m , takes the form 

  4

1 24

0.1176471
D g a 


    

  4

1 20.0012077626g a   .   (29) 

The stability condition in (28), obtained for 

symmetric frequencies, refines the previously 

obtained condition in (29). From these inequalities 

follows that the approximate value of the critical 

tension is 0.930 times lower. Thus, the previously 

obtained approximate stability conditions are 

refined. 

Thus, the previously obtained approximate stability 

conditions are refined. It is shown that taking into 

account the two terms in a row of the frequency 

equation gives an accuracy sufficient for practice. 

The research was conducted out within the 

framework of the fundamental research program of 

the Ministry of Education and Science of Ukraine 

(project No. 0116U002522). 

 

CONCLUSIONS 

It is shown that for clamped, supported and free 

contours the frequency equation is divided into two 

equations describing even and odd frequencies and 

can be written in a unified form for these 

frequencies. If the contours of the plate have 

different fixing, then the frequency equation no 

longer splits into even and odd frequencies. The 

greatest simplification of the frequency equation 

was achieved for the case of clamped contours. For 

this case, the previously obtained approximate 

conditions for the stability of plate and liquid 

oscillations are refined. It is shown that for 

asymmetric frequencies the approximate value of 

the critical dimensionless stiffness is 0.952 times 

lower and 0.930 times for symmetric ones. 
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