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Abstract: The growth of the world population requires an increase in food production. Its solu-
tion requires the introduction of advanced technologies, including automated irrigation systems.
Commercially available smart irrigation systems are not widespread because of their high cost. A
low-cost smart irrigation system based on satellite monitoring is proposed to schedule irrigation.
The purpose of this study was to investigate the smart irrigation system during five-year field ex-
periments. Water-use productivity, irrigated water-use productivity, and payback period were used
as indicators to evaluate the low-cost irrigation system. This study was carried out for four crops:
wheat, corn, sunflower, and rapeseed. The results obtained were compared to conventional irrigation
systems. The experiments were designed at five farms locations. Their results showed that average
water-use productivity rose from 4.09% (wheat) to 9.8% (sunflower). An increase in yields varied
from 5.72% (wheat) to 13.42% (corn). Corn had a maximum yield deviation (26.72%). The payback
period depended on the crop variety and the plot area. The payback period for wheat production
under the proposed system was the longest (up to 82 months). Payback periods for corn, sunflower,
and rapeseed production were shorter (from 3 to 12 months). Therefore, the smart irrigation system
provides advantages and can be recommended as a low-cost solution.

Keywords: smart irrigation; water-use productivity; yield; irrigation strategy

1. Introduction

The increase of the world population [1] requires an increase in food production. It is a
challenge for agriculture. It must use innovative technologies to improve the efficiency of all
production processes, including irrigation systems. Despite the relatively limited irrigation
areas, irrigation agriculture is expected to produce a significant quantity of food [1,2]. Water
is a vital resource for agriculture. It impacts the social and economic life of any country. The
agriculture of some countries largely depends on irrigation [3]. Farmers need innovative
irrigation technologies for their sustainable development. Moreover, due to global climate
change, the climate is becoming more arid. Agriculture is the most sensitive sector of the
economy to climate change. Droughts result in a decrease in yields and the profitability of
agriculture. In general, climate change increases risks for sustainable crop production. Due
to climate change, arid areas are expanding. This phenomenon hinders food production [4].
For this reason, farmers are forced to develop irrigation systems to overcome water scarcity.

The world’s arable land is decreasing because of climate change, soil erosion, etc. India
has the most arable land, consisting of 156.5 million hectares. India is followed by the USA
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(152.3 million hectares) and Russia (123.1 million hectares). China has the fourth largest
amount of agricultural land in the world (118.9 million hectares). Ukraine has 32.8 million
hectares of arable land. It is in the tenth position in the world [5].

The lack of precipitation forces farmers to use irrigated agriculture. There are currently
324 million hectares of irrigated land in the world. Bangladesh is the leader in the relative
area of irrigated land. Its share of irrigated land is 59.71%. China is ranked thirtieth (10.49%)
and Ukraine is ranked ninety first (0.79%) [6]. Due to climate change, in Ukraine, only
11.30% of the arable land does not require irrigation [7]. Ukrainian farmers are forced to
expand irrigation and use resource-saving technologies to overcome current climate change.

Fresh water availability for agricultural irrigated land varies between countries and
their regions. Ukraine is situated in the Eastern European region. In this region, internal
renewable water resources (IRWR) per inhabitant range from 227 m3/year (the Republic of
Moldova) to 29,000 m3/year in the Russian Federation. Ukraine depends on other countries
for 62% for their renewable water resources. IRWR per habitant for China is 2245 m3/year.
Its dependency ratio is 0.6% [8].

Agriculture consumes around 70% of total water in the world [9]. Under these con-
ditions, water management gains particular importance. Modern practices can lead to
over-irrigation. Many farmers use a fixed irrigation cycle. This cycle uses a fixed amount of
water. In most cases, it results in over-irrigation. This increases specific energy, water, fertil-
izer, and labor use, while yields and economic profitability decrease [10]. For this reason,
the authorities of many countries are developing strategies to improve the sustainability of
food production, paying attention to water management [10–14].

The limitations of water resources and the deterioration of quality results can be
seen in an increase in the number of studies focused on irrigation systems and their
processes [13–16]. These are reasons for the implementation of technological innovations.
These technologies may be rather expensive. Initial investment costs of a smart irrigation
system can be up to EUR500/ha higher than a conventional irrigation system [17,18].

As a rule, farmers use their own experience to develop irrigation scheduling [19]. An
optimized irrigation strategy requires taking into account many factors, such as weather
conditions, soil quality, crop species, irrigation system, etc. [20]. The application of this
strategy needs the irrigation systems to be equipped with digital tools to make decisions
for automatic control [21–25].

Smart irrigation can optimize crop production and reduce the consumption of different
resources, including water and energy. It establishes a proper amount of water supply and
timing [26]. As a result, farmers obtain the maximum yields and reduce operational costs.
Researchers pay a lot of attention to smart irrigation systems. Abrishambaf et al. [27] studied
irrigation scheduling based on energy and water supply optimization. Dong et al. [28]
analyzed an irrigation model for a central pivot irrigation system based on a wireless
sensor network. An automatic irrigation system based on the internet of things (IoT), a
microcontroller, and a cloud server was developed by Boobalan et al. [29] and Pernapati [30].
Optimization of operational costs and development of smart software are in the spotlight
too [31]. Semantic data modeling is used in smart irrigation systems. These models estimate
a number of parameters, such as soil type, water requirement, etc. Based on real-time
sensors reading, the software controls the irrigation processes [32].

However, most of the innovative solutions for smart irrigation are not practically
available for commercial application. Commercially available systems are expensive for use
in developing countries and by small farmers. Therefore, there is an urgent need to develop
low-cost smart irrigation systems. We put forward the following hypothesis: the low-cost
Rain-1 module (developed in Ukraine) can convert a conventional irrigation system into a
smart one and improve its water-use efficiency.

This article aims to assess the effectiveness of the low-cost smart irrigation system. To
achieve this aim, we set up three goals:

• To investigate climate conditions.
• To study water-use productivity.



Agronomy 2022, 12, 1013 3 of 15

• To estimate the payback period of a retrofitted irrigation system.

2. Materials and Methods

This study focuses on the assessment of a retrofitted irrigation system. We studied
a retrofitted center pivot irrigation system (CPIS) for five years. This study assessed the
impact of a low-cost irrigation system on water-use productivity and economic indica-
tors, such as the payback period and an increase in income. The study combined field
experiments and the mathematical analysis of obtained data. Our methodology com-
prises the following stages: the collection of field experiment data; the determining of
the water-use productivity; the determining of the irrigated water-use productivity; the
calculation of additional income; and the assessment of the payback period for a low-cost
smart irrigation system.

2.1. Climate

The climate of the Kherson province is temperate–continental. It has relatively mild
winters and hot summers. The average annual air temperature ranges from 9.8 to 10.8 ◦C.
This has been the average long-term air temperature for the last 30 years. The annual
rainfall varies from 239 to 969 mm per year. Its average value is 444 mm. About 65% of
precipitation falls in the warm season. Kherson province is the driest region of Ukraine.
The climate is characterized by dry winds (speed is higher than 5 m/s), low humidity (less
than 30%), and air temperatures above 25 ◦C. Such climatic conditions impede obtaining
high yields. The monthly rainfall and air temperatures during the study are presented in
Figure 1 [33].
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Figure 1. Average temperatures and rainfall (during the five years of experiments).

2.2. Irrigation Water Supply

Irrigation water is delivered from the nearby North Crimean irrigation canal. Irrigation
water quality is assessed by standard methods [9,34,35]. Its pH is equal to 8.3. The
water contains soluble salts and compounds as follows: hydrocarbonates—68.40 mg/L,
sulphates—82.00 mg/L, chlorides—40.80 mg/L, calcium—44.20 mg/L, magnesium—24.30 mg/L,
sodium—32.90 mg/L, and ammonia nitrogen—0.15 mg/L.
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2.3. Field Experiments

Field experiments were carried out for the following crops: winter rapeseed, winter
wheat, corn, and sunflower. Five farms took part in this study. They are located in the
Henichesk and Kakhovka districts of Kherson province (southern Ukraine) (Figure 2).
Their geographic coordinates are as follows: 46◦33′22” N and 34◦08′25” E; 46◦31′05” N and
34◦17′23” E; 46◦38′16” N and 32◦27′59” E; 46◦26′48” N and 33◦41′53” E; 46◦39′00” N and
33◦34′35” E. The Kherson province is a dry steppe. The soils of the farms are dark chestnut,
deflated soils. Soil properties are presented in Table 1. Groundwater depth was more than
5 m and water infiltration was 1.3–2.2 mm/min. Crops were cultivated by conventional
agricultural practices (Table 2).
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Figure 2. Districts of the Kherson province.

Table 1. Primary soil properties.

Indicators Unit
Farm

1 2 3 4 5

Soil organic carbon g·kg−1 2.3 2.4 2.8 2.5 2.3
pH - 8.1 8.1 6.8 7.1 5.0

Nitrogen mg·kg−1 35 25 24 34 31
Phosphorus mg·kg−1 32 31 34 30 37
Potassium mg·kg−1 298 310 500 412 546

Bulk density kg·m−3 1380 1390 1370 1365 1374

The farmers use crop rotation. They grow the same crop in a plot with the following
intervals: wheat—from 1 to 3 years; corn—from 0 to 5 years; sunflower—from 5 to 9 years;
and rapeseed—from 4 to 5 years.

There were two CPIS for each crop: control and experimental. The experimental CPIS
was retrofitted CPIS. The irrigated area of each CPIS was 41 hectares. It was equipped with
a tracker and a computer. This CPIS obtained information through a satellite concerning soil
moisture and plant conditions. A weather station was used to obtain air temperature, wind,
and precipitation data. The computer processed the above information and controlled
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water consumption. It used an original program. Conventional irrigation systems rely
on an operator’s experience. They use simple parameters, such as the crop types, season,
and available water. We compared two different irrigation strategies by the number of
indicators, such as yield, water-use productivity, and financial costs.

Table 2. Agricultural practices.

Farming Operation
Crop

Wheat Corn Sunflower Rapeseed

Tillage

Skimming (8–10 cm)
Ploughing (20–22 cm)

Deep loosening (40 cm)
Spring harrowing

Skimming (8–10 cm)
Ploughing (25–27 cm)

Skimming (8–12 cm)
Ploughing (25–27 cm)

Harrowing

Skimming (8–10 cm)
Ploughing (22–24 cm)
Cultivation (5–7 cm)

Harrowing

Sowing

Date: 20 September–5 October
Pre-sowing cultivation (6–8 cm)
Seeding rate: (40.0–50.0) × 105

seeds per hectare
Rolling

Harrowing

Date:1 May–10 May
Pre-sowing cultivation (6–8 cm)

Seeding rate: (0.8–1.0) × 105

seeds per hectare
Rolling

Date: 10 April–1 May
Pre-sowing cultivation (5–7 cm)

Seeding rate: (0.4–0.6) × 105

seeds per hectare
Rolling

Date: August
Pre-sowing cultivation (3–4 cm)

Seeding rate: 6.0 × 105 seeds
per hectare

Irrigation 1200–1500 m3/ha 3900–4500 m3/ha 1240–1500 m3/ha 1030–1500 m3/ha

Fertilization N40P10K10 N60P60K60 N50P50K50 N95P50K30

Weed control
Chemicals:

2.4-D–1.4 kg/ha;
Sumi-Alfa–0.25 L/ha

Inter-row cultivation
Chemicals:

Harnesы–2.5 L/ha

Inter-row cultivation
Chemicals: Reglon–1L/ha

Inter-row cultivation
Chemicals:

Cineb–2.4 kg/ha;
Sumicidin–0.3 L/ha

Harvesting July October September July

The experiments were conducted over five years on irrigated lands. They were de-
signed at five farms located in the Kherson province for oilseed and grain crops (winter
rapeseed, sunflower, winter wheat, and corn). We used the method of randomized split
plots. There were forty plots. During a five-year field experiment, we explored the im-
pact of a low-cost smart irrigation system on crop yield, water-use productivity, and
economic benefits.

2.4. Component and Functions of a Smart Irrigation System

The main goal of any smart irrigation system is to decrease production costs and,
therefore, to increase benefit. The saving of water, energy, fertilizer, and chemicals are ex-
pected from the system. The saving must not cut yield. In conventional irrigation systems,
field technicians make decisions. A traditional strategy is normally based on soil moisture
control. The methods used by farmers to calculate the irrigation rate are based on the
calculation of soil moisture. It does not take into account many factors, including transpira-
tion from the plants and terrain features. Therefore, the calculations are inaccurate, and
their results exceed the required needs by 20–30%. Over-irrigation results in waterlogging,
reduced air in the soil, the development of anaerobic bacteria, degradation, and significant
economic costs. This irrigation scheduling strategy is implemented manually.

Our automatic system of control collects data, analyzes them, and makes the decision
on irrigation. It uses information about soil conditions, weather, and climate data to
schedule watering. The system monitors the quantity and timing of irrigating.

The Rain-1 module is a specially developed set of software and hardware for center
pivot sprinkler machines (Fregat, Zimmatic, Bauer, etc.) based on GPS and GPRS modules
for determining and transmitting operational data of irrigation systems. This module
analyzes irrigation efficiency, vegetation, and soil moisture with daily satellite imagery
using the following online services:

• vegetation index
• normalized difference vegetation index
• heterogeneity of plants
• humidity index
• heterogeneity of moisture
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Its use provides some advantages. It allows the controlling of the operation of the
irrigation system remotely. A satellite data analysis allows farmers to adjust irrigation
decisions to maximize crop yield growth. This module allows switching to night watering
to save money.

It is inexpensive. It may be customized for specific crops, soil, and weather conditions.
The system receives information from a satellite and automatically determines crop evapo-
transpiration. Furthermore, it generates a program for the controller. A signal is transmitted
to the actuators of an irrigation system. The automatic system of control (Figure 3) can be
integrated into any irrigation machines.

Agronomy 2022, 12, x FOR PEER REVIEW 6 of 16 
 

 

and significant economic costs. This irrigation scheduling strategy is implemented manu-
ally. 

Our automatic system of control collects data, analyzes them, and makes the decision 
on irrigation. It uses information about soil conditions, weather, and climate data to sched-
ule watering. The system monitors the quantity and timing of irrigating. 

The Rain-1 module is a specially developed set of software and hardware for center 
pivot sprinkler machines (Fregat, Zimmatic, Bauer, etc.) based on GPS and GPRS modules 
for determining and transmitting operational data of irrigation systems. This module an-
alyzes irrigation efficiency, vegetation, and soil moisture with daily satellite imagery us-
ing the following online services: 
• vegetation index 
• normalized difference vegetation index 
• heterogeneity of plants 
• humidity index 
• heterogeneity of moisture 

Its use provides some advantages. It allows the controlling of the operation of the 
irrigation system remotely. A satellite data analysis allows farmers to adjust irrigation 
decisions to maximize crop yield growth. This module allows switching to night watering 
to save money. 

It is inexpensive. It may be customized for specific crops, soil, and weather condi-
tions. The system receives information from a satellite and automatically determines crop 
evapotranspiration. Furthermore, it generates a program for the controller. A signal is 
transmitted to the actuators of an irrigation system. The automatic system of control (Fig-
ure 3) can be integrated into any irrigation machines. 

 

Figure 3. Automated irrigation quality control system Rain-1. 

This system displays all data on the operation of the sprinklers. It shows a list of used 
sprinklers. The green circles are used for the working machines. The stopped machines 
are shown in orange. Moreover, there is information concerning the downtime and the 

Figure 3. Automated irrigation quality control system Rain-1.

This system displays all data on the operation of the sprinklers. It shows a list of used
sprinklers. The green circles are used for the working machines. The stopped machines
are shown in orange. Moreover, there is information concerning the downtime and the
irrigation rates. The colored chart shows the watering rates. The bright green color
corresponds to the set norm of outflow, the darker color is above the norm, and the lighter
is below (Figure 4). Based on this information (regarding soil moisture content), the module
generates a program for an irrigation system. It determines the necessary amount of water
supply for each sector of a plot. Figure 4 depicts current information about eight irrigated
fields that are served by auto-mated irrigation quality control system Rain-1. The top left of
the diagram displays the following information for field 6. The irrigation machine is not
working (stopped). This machine has made five circles. And this is the twenty-fourth day of
growing process. The top right of the diagram displays information about the operational
status of the machine (on), its water meter (on) and field area (11 ha). The same information
can be obtained for all fields.
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2.5. Water-Use Efficiency

The water consumed is equal to the sum of rainfall and irrigation. The water-use
productivity is calculated as the ratio of the crop yield to the seasonal water consumed
(rainfall and irrigation) [36,37].

WUP = CY ·WC−1, kg/m3, (1)

where CY is the crop yield, kg/ha, and WC is the water consumed, m3/ha.
The irrigated water-use productivity is

IWUP = CY · IWC−1, kg/m3, (2)

where IWC is the irrigated water consumed, m3/ha.
We compared the water-use productivity and the financial costs for two irrigation

strategies: fixed interval irrigation (a base variant); an optimal schedule and distribution.
Irrigation scheduling determines when and how much to irrigate. Optimal scheduling
maximizes profitability. The scheduling maintains optimal soil moisture by monitoring soil
moisture, weather conditions, crop conditions, and predicting soil moisture to achieve it.

Crop yields were measured at harvest time. Yields were determined by the method of
mechanized harvesting. We used the following formula:

CY = Mn · PA−1, kg/ha, (3)

where Mn is the mass of crop from a field, kg, and AF is the plot area, ha.
The irrigation rate is based on the water balance method [38].

2.6. Economic Indicators

We determined two economic indicators: the increase in the income of the harvested
crop and the payback period for additional capital investments. To determine the economic
efficiency, we considered both the change in yield and the cost of water for irrigation.
A payback period is used as an economic criterion. It is calculated as a ratio of investment
costs (to retrofit a conventional irrigation system into a smart one) to return (economic
benefits from the application of the smart irrigation system).

2.7. Statistical Analysis

The obtained experimental data were processed, tabulated, and statistically analyzed.
The actual yield percent deviation from different irrigation systems was calculated by the
following formula:

dCY = 100 · CYs− CYc
CYc

, %, (4)

where CYc is the crop yield for a conventional irrigation system, kg/ha, and CYs is the crop
yield for a smart irrigation system, kg/ha.

3. Results and Discussion
3.1. Water-Use Productivity

Table 3 illustrates the effect of the smart irrigation system on crop water-use produc-
tivity. The table shows the average data from the five years of our research. During the
five-year experiments, the amounts of applied irrigation water were as follows: winter
wheat—from 1220 to 1500 m3/ha; corn—from 3900 to 4500 m3/ha; sunflower—from 1240 to
1500 m3/ha; rapeseed—from 1030 to 1500 m3/ha. The yields of crops were in the follow-
ing ranges: winter wheat—from 5490 to 6980 kg/ha; corn—from 11,040 to 14,240 kg/ha;
sunflower—from 2380 to 3290 kg/ha; rapeseed—from 2800 to 3390 kg/ha.
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Table 3. Crop Water-Use Productivity.

Locatiom Irrigation System Yield, kg/ha Rainfall, mm Irrigation, mm GIW, m3 WUP, kg/m3 IWUP, kg/m3

wheat

Farm 1 ICS 6980 444 148 5920 1.18 4.72

SIS 6870 444 122 5660 1.21 5.63

Farm 2 ICS 6370 435 141 5760 1.11 4.52

SIS 6410 435 126 5610 1.14 5.09

Farm 3 ICS 5970 398 147 5450 1.10 4.06

SIS 6030 398 135 5330 1.13 4.47

Farm 4 ICS 5490 365 150 5150 1.07 3.66

SIS 5640 365 141 5060 1.11 4.00

Farm 5 ICS 5600 401 142 5430 1.03 3.94

SIS 5999 401 134 5350 1.12 4.48

corn

Farm 1 ICS 13000 444 410 8540 1.52 3.17

SIS 13900 444 401 8450 1.64 3.47

Farm 2 ICS 14240 435 435 8700 1.64 3.27

SIS 13970 435 395 8300 1.68 3.54

Farm 3 ICS 12280 398 430 8280 1.48 2.86

SIS 12950 398 401 7990 1.62 3.23

Farm 4 ICS 11040 365 450 8150 1.35 2.45

SIS 12180 365 432 7970 1.53 2.82

Farm 5 ICS 12650 401 426 8270 1.53 2.97

SIS 13160 401 390 7910 1.66 3.37

sunflower

Farm 1 ICS 3020 435 145 5800 0.52 2.08

SIS 3195 435 124 5590 0.57 2.58

Farm 2 ICS 3000 398 145 5430 0.55 2.07

SIS 3190 398 138 5360 0.60 2.31

Farm 3 ICS 2380 365 150 5150 0.46 1.59

SIS 2510 365 134 4990 0.50 1.87

Farm 4 ICS 2710 401 144 5450 0.50 1.88

SIS 3090 401 148 5490 0.56 2.09

Farm 5 ICS 3020 435 145 5800 0.52 2.08

SIS 3195 435 124 5590 0.57 2.58

rapeseed

Farm 1 ICS 3380 444 120 5640 0.60 2.82

SIS 3390 444 103 5470 0.62 3.29

Farm 2 ICS 3180 435 137 5720 0.56 2.32

SIS 3270 435 122 5570 0.59 2.68

Farm 3 ICS 2990 398 150 5480 0.55 1.99

SIS 3170 398 139 5370 0.59 2.28

Farm 4 ICS 2800 365 150 5150 0.54 1.87

SIS 2870 365 144 5090 0.56 1.99

Farm 5 ICS 2900 401 142 5430 0.53 2.04

SIS 3085 401 131 5320 0.58 2.35

ICS—conventional irrigation system; SIS—smart irrigation system; GIW—gross irrigation water consumption;
WUP—water-use productivity; IWUP—irrigated water-use productivity.
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The use of smart irrigation technology allows us to reduce water consumption com-
pared to a conventional irrigation system. Figure 5 shows the average results for the
five-year field experiments for all five farms. The best result of 17.72% is observed for
sunflower production. The lowest outcome of 11.57% is revealed for corn (Figure 5).
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Figure 5. A relative increase in water-use productivity of smart irrigation systems compared to
conventional ones.

Our obtained results are consistent with the results of other studies. The water-
use productivity of wheat ranges from 0.4 (Uttar Pradesh West, India) to 2.08 kg/m3

(Wangtong, China). Corn has better water-use productivity. It varies from 0.55 (Tanzania)
to 3.33 kg/m3 (USA) [39]. Vozhehova et al. [40] studied corn production on irrigated land
in the south of Ukraine. They found that the lowest water-use productivity (0.5149 kg/m3)
was provided by disk cultivation (depth of 12 to 14 cm) and zero fertilizer. The highest
WUP of 2.525 kg/m3 was determined with shallow disk cultivation of 8 to 12 cm and
fertilizer application rate of N180P60. Djaman et al. [41] found that the WUP of canola is in
the range of 0.31 to 0.5 3.33 kg/m3. This depends on a cultivar, a tillage practice, nutrition,
and irrigation regime.

Sunflower seed production on irrigated land gives high benefits. Saeed et al. [42]
found it had a maximum water-use productivity of 6.14 kg/m3. Petrova et al. [43] give
similar results. Albaji et al. [44] studied the water-use efficiency of sunflower seeds in the
south-west of Iran. They reported that irrigated water-use productivity ranges from 1.16 to
3.024 kg/m3. Our experiments showed that irrigated water-use productivity varied from
1.59 to 2.58 kg/m3.

3.2. Relationship between Deviation of Yield and Gross Water Consumption

Field experiments revealed a significant deviation of yields (Figure 6). Corn and
sunflower had the highest values (up to 20–27%). Wheat and rapeseed were characterized
by a much smaller deviation of their yields (up to 11–12%). The main reason for the increase
in yield is as follows: an advanced technology prolongs optimal soil water content during
a growing spell. Moreover, it decreases water erosion, runoff, and nutrient status. There
was a moderate (R2 = 0.7309) linear relationship between the deviation of corn yield and
gross water consumption. Whereas there was a poor (R2 = 0.033 to 0.0087) relationship for
wheat, sunflower, and rapeseed. This is evidence that other factors have an influence on
the above relationships. These factors should be subject to further study.
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Figure 6. The relationship between the deviation of yield and gross water consumption.

The slope of the lines demonstrates that for wheat and corn, an increase in the water
use rate leads to a decrease in the efficiency of the proposed irrigation system. Whereas
for oilseeds (sunflower and rapeseed), the character of lines is the opposite. An increase in
the irrigation rate improves the efficiency of a low-cost irrigation system. This leads to a
greater increase in yield.

Our results coincide with other studies. Araya et al. [45] reported that proper water
management practices could improve wheat yield by 7–20%. Supplemental irrigation must
be carried out with acceptable accuracy to reach a maximum effect [46].

Minimum, maximum, and average increases in water-use productivity are presented
in Table 4. The values given in the table show that corn and sunflower have the highest
rise in WUP. Wheat has lower values. Sunflower has a higher minimum increase in WUP.
Therefore, a low-cost irrigation system for sunflowers gives the best results compared to
other examined crops.
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Table 4. Minimum, maximum, and average increases in water-use productivity (%).

Crop Minimum Maximum Average

Wheat 2.54 8.74 4.09
Corn 2.44 13.33 8.32

Sunflower 8.69 12.00 9.80
Rapeseed 3.33 9.43 5.82

3.3. Economic Efficiency

Economic efficiency is determined based on the following data: investment costs in a
smart irrigation system; operational costs of a smart irrigation system; yields; crop prices;
water-saving; price of water; plot area. We propose the determination of a specific return
(the difference between the values of the crop grown using different irrigation systems). Its
value is suggested to be calculated by the following formula:

SR = (CP · CYs−WP ·WCs)− (CP · CYc−WP ·WCc), USD/ha, (5)

where CYc is the yield under a conventional irrigation system, kg/m3; CYs is the yield
under smart irrigation system, kg/m3; CP is the crop price, USD/kg; WP is the price of
water, USD/m3; WCs is the irrigated water consumed by the low-cost smart irrigation
system, m3/ha; and WCc is the irrigated water consumed by the conventional irrigation
system, m3/ha.

The irrigated water consumed can be calculated using the formulas:

WCs =
CYs

IWUPs
, m3/ha (6)

and
WCc =

CYc
IWUPc

, m3/ha. (7)

After transformation, we obtain the final equation for determining the specific return:

SR = CP · (CYs− CYc) + WP ·
(

CYc
IWUPc

− CYs
IWUPs

)
, USD/ha. (8)

We suggest calculating a payback period using the following formula:

PBP = IC · (SR · PA + OC)−1, year, (9)

where IC is the investment costs of a smart irrigation system, USD; OP is the operating
costs, USD/year; and PA is the plot area, ha.

In our calculations, we assumed the following initial data: investment costs—USD2260; op-
erating costs (operation, management, maintenance, repair, replacement)—USD1300/year [47];
the price of water—from USD0.050/m3 to USD0.083/m3; the plot area—41 and 50 ha
(actual values). Actual crop prices were as follows: USD/t: wheat—300.4; corn—278.3;
sunflower seeds—649.4; rapeseed—728.9 [48]. The smart irrigation system gives the best
result for corn production. This system allows farmers to increase income in the range from
USD40/ha to USD185/ha (Figure 7).

We found payback periods for additional investment costs to convert a conventional
irrigation system into a low-cost smart irrigation system. Payback periods are calculated
for different crops and plot areas. The application of smart irrigation systems for wheat
production has the worst result. Corn production covers investment costs faster than other
crops (Figure 8). The main reason for this is that corn production has the highest specific
return (Figure 7). The influence of a plot area on the payback period depends on the specific
return. The increase in the area leads to a decrease in the payback period of investment
costs. Results for wheat confirm the above idea.
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Figure 7. An increase in crop production income from the use of low-cost irrigation systems.
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Figure 8. Payback periods for the retrofitting of the conventional irrigation system.

4. Conclusions

Ukraine has highly developed agriculture. Modern irrigation technologies are needed
for sustainable agricultural production. They are rather expensive. However, existing
irrigation systems can be improved by simple and relatively cheap solutions.

Five-year field experiments have proven that the Rain-1 module improves the ir-
rigation water-use productivity. The smart irrigation system reduces irrigation water
consumption. Its irrigated water-use productivity is less (by 11–17%) compared to conven-
tional irrigation systems. This is possible due to optimized water supply and timing. The
lowest IWUP is recorded for wheat, while the highest value is for sunflowers.

The specific return is proposed as an indicator for the economic assessment of irrigation
systems. The economic efficiency of smart irrigation technologies depends on the specific
return of any crop. In our study, the application of smart irrigation gives better results for
sunflower, rapeseed, and corn. For the Rain-1 module, a payback period ranges from 3.8 to
82 months. If there is a cultivation of corn, sunflower, and rapeseed, the payback period
can be less than one year.
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An economic benefit is achieved with irrigation water saving and proper water dis-
tribution. Our study has demonstrated that the existing conventional irrigation systems
can be retrofitted with the Rain-1 module to improve water management. Therefore, the
application of this module may be recommended.

Agriculture is an energy-intensive industry. It emits around 25% of the total green-
house gases [49,50]. Energy and environmental analyses of low-cost smart irrigation
systems are the subjects of further study. They are planned to be implemented using
mathematical models tested in previous publications [51–53].

Pressurized irrigation systems are energy-intensive. An increase in energy costs results
in higher production costs and, therefore, a reduction of profitability [54]. The share of
energy can reach 40–65% of total operational costs [9,55]. For this reason, an energy analysis
will be the subject of further study.
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