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ABSTRACT: Eigenoscillations of the elastic bottom of a rigid (two-dimensional)
rectangular tank with an ideal incompressible liquid with irrotational flows,
which completely fills it, are were investigated. The elastic bottom is a clamped
thin rectangular plate subject to tensile or compressive forces in its middle sur-
face. It is shown that the frequency equation is divided into two equations
describing symmetric (even) and antisymmetric (odd) frequencies, and can be
written in a single form for these frequencies. For even and odd frequencies, an
approximate formula is obtained, from which approximate conditions follow
for stability of coupled vibrations of an elastic basis and a liquid. Exact stabil-
ity conditions are obtained. The stability conditions of the static approach co-
incide with the exact stability conditions of the dynamic approach. It is shown
that the approximate value of the critical bending stiffness for asymmetric fre-
quencies is 0.952 times lower, and for symmetric frequencies – 0.930 times.

KEY WORDS: hydroelasticity, elastic rectangular plate, ideal incompressible
liquid, rectangular tank, flat oscillations, stability.

1 INTRODUCTION

This work is a continuation of article [1], in which the stability of normal vibrations
of the elastic bottom of a rigid rectangular tank with an ideal incompressible liq-
uid completely filling it was investigated. The elastic bottom was presented in the
form of a membrane. In this article, the elastic bottom is a clamped thin rectangular
plate subject to tensile or compressive forces in its middle surface. It is shown that
when the plate degenerates into a membrane, we obtain the well-known results of
the article [1]. The article [1] provides a fairly complete overview of publications
on the problem under consideration at the end of the 20th and beginning of the 21st
centuries. Below is an overview of only the main publications of recent years.
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In article [2] we propose the construction of approximate solutions to two-dimen-
sional hydroelastic problems that describe free oscillations of an ideal liquid in a hor-
izontally placed long cylindrical container with an arbitrary symmetric cross-section.
The free surface of the liquid is covered with a plane membrane or an elastic plate.
Using concrete examples, we analyze the obtained solutions and the results of the
calculations of frequencies, and the form of oscillations of the mechanical system
under consideration.

Plane vibrations of a rectangular plate horizontally separating ideal incompress-
ible liquids of different densities in a rigid rectangular channel with elastic bases
were considered in [3]. The elastic top and bottom base are provided in the form of
rectangular plates. A similar problem is discussed in the article [4] for a rigid rect-
angular channel with rigid bases. It is shown that for the case of clamped, supported
and free contours, the frequency equation breaks down into two equations describing
even and odd frequencies, and can be written in a single form for these frequencies.
If the contours of the plate have different fixation, then the frequency equation is not
divided into even and odd frequencies. The greatest simplification of the frequency
equation was achieved in the case of clamped contours. In this case, the previously
obtained approximate conditions for the stability of oscillations of the plate and liquid
are refined.

The approach developed in paper [5] is applied to vibration analysis of rectangular
plates coupled with liquid. The plates can be totally submerged in liquid or floating
on its free surface. The mathematical model for the structure is developed using a
combination of the finite element method and Sanders’ shell theory. The article [6]
deals with the study of the behavior of an idealized two-dimensional hydroelastic
system involving two inviscid liquids with an elastic rectangular container. The main
objective is to study the influence of the physical parameters on the system eigenfre-
quencies and eigenmodes. The governing equations describing the behavior of the
system are analyzed using the concept of normal modes and their solutions presented
in the form of infinite series. The expansion coefficients for the velocity potentials are
calculated using a new inner product that allows the orthogonalization of the normal
modes. The paper [7] deals with a theoretical dynamic model of the fuel assembly
submerged in the coolant, and presents a free vibration analysis of a bundle of identi-
cal rectangular plates fully in contact with an ideal liquid. The orthogonal polynomial
functions, as admissible functions, were generated using the Gram–Schmidt process
to approximate the wet dynamic displacements of the plates with a clamped-clamped-
free-free boundary condition. The natural frequencies under the wet condition were
calculated using the Rayleigh–Ritz method based on minimizing the Rayleigh quo-
tient of the ratio between the maximum potential energy and total kinetic energy. The
comparison showed the excellent agreement between the results from the proposed
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theoretical method with the finite element analysis results.
In [8] the hydrostatic vibration analysis of a laminated composite rectangular plate

partially contacting with a bounded liquid is studied. Wet dynamic transverse dis-
placements of the plate are approximated by a set of admissible trial functions which
are required to satisfy the clamped and simply supported geometric boundary con-
ditions. Natural frequencies of the plate coupled with sloshing liquid modes are
calculated using Rayleigh–Ritz method based on minimizing the Rayleigh quotient.
The proposed analytical method is validated with available data in the literature.

The article [9] presents an analytical solution for free vibration analysis of thick
rectangular isotropic plates coupled with a bounded liquid for various boundary con-
ditions. In order to consider displacement theories of an arbitrary order, the Carrera
Unified Formulation (CUF) is used. The eigenvalue problem is obtained by using the
energy functional, considering plate and liquid kinetic energies as well as the poten-
tial energy of the plate. The Ritz method is used to evaluate the displacement vari-
ables, and the functions used in the Ritz series can be adjusted to consider arbitrary
vibration with the classical boundary conditions. The convergence of the solution is
analyzed, and the validation of results considering open literature and the 3D finite
element software is performed.

Many works deal with hydroelastic oscillations of an ideal liquid in circular and
coaxial cylinders with rigid and elastic bases, i.e., [10–16] and many others. In [10],
the problem of free vibrations of an ideal liquid in a container in the form of a right
circular cylinder with an arbitrary axisymmetric bottom is considered in the case
when the unperturbed free surface of the liquid is covered with an elastic membrane
or a plate. Using the expansion in terms of eigenfunctions of an auxiliary spectral
problem with a parameter in the boundary conditions and the method of decompo-
sition of the region of the meridional section of the container, an analytical solution
to the problem is obtained. These solutions are analyzed and frequencies and modes
of vibration are calculated. In article [11] derives the virtual masses and frequencies
for asymmetric free vibration of the coupled system including a clamped circular
plate in contact with incompressible bounded liquid. Considering small oscillations
induced by the plate vibration in an incompressible and inviscid liquid, velocity po-
tential function is used to describe the liquid motion. Derivation uses the Kirchhoff’s
thin plate theory. Two approaches are used to derive the free vibrations frequencies
of the system. The solutions include an analytical solution employing the Fourier-
Bessel series and a variational formulation applied simultaneously to the plate and
liquid. The strong correlation between free vibrations frequencies of two solutions
is found. Finally, the effect of liq uid depth on the virtual masses and free vibration
frequencies of the coupled system is studied.

The paper [12] deals with the hydroelastic vibration of a circular elastic diaphragm
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interacting with the incompressible and inviscid liquid inside the cylindrical cham-
ber with a central discharge opening. Taking into account axisymmetric vibration
of the diaphragm, the liquid pressure exerted upon the plate is formulated using the
linear Bernoulli’s equation. Numerical results are presented for different materials
for diaphragm (silicon and glass) and pumped liquid (water and methanol). Normal
frequencies of the coupled system, wet mode shapes of diaphragm, and liquid oscilla-
tion modes are presented using numerical simulations. It is seen that the hydroelastic
interaction lowers considerably natural frequencies, however the wet mode shapes
for diaphragm vibration are very similar to the dry mode shapes.

In the article [13], the frequency equation of axisymmetric oscillations of a heavy
two-layer ideal liquid in a rigid annular cylindrical tank with an elastic top and bot-
tom in the form of clamped annular plates is derived and researched. The work [14]
deals with the study of frequency equations of asymmetric and symmetric natural os-
cillations of an ideal bilayer liquid in a rigid circular cylindrical tank with an elastic
top and bottom in the form of clamped circular plates. Using the example of a homo-
geneous liquid with a free surface and an elastic bottom in the form of a membrane,
the frequency spectrum was analyzed analytically and numerically.

Numerical study of the effects of a thin plate covering a cylindrical rigid fuel tank
filled with an inviscid, irrotational, and incompressible fluid is given in [15]. Govern-
ing equations of liquid motion coupled by plate vibration are solved analytically. We
study the effect of a parameter on the natural frequency of coupled liquid-structure
interaction.

The semianalytical scheme is proposed to explore the effect of the single flexible
baffle on the coupled responses in the rigid cylindrical tank partially filled with an
ideal liquid undergoing the pitching excitation [16]. The function series for the ve-
locity potential, the dynamic deflection of the flexible baffle, and the surface wave
height are given by introducing the time-dependent generalized coordinates. The
Stokes–Joukowski potentials which are contained in the liquid velocity potential can
be solved analytically. According to the dynamic and kinematic equations for the
free surface and the coupled vibration equation for the flexible baffle, the coupled
dynamic response equations are obtained. The additional damping terms are intro-
duced to account the sloshing damping. The semianalytical method is validated by
the comparison with the numerical results.

In this paper, we investigate the normal vibrations of the elastic bottom of a rigid
rectangular tank with an ideal incompressible liquid that completely fills it. The
elastic bottom is a clamped thin rectangular plate subject to tensile or compressive
forces in its middle surface. It is shown that the frequency equation is separated into
two equations describing symmetric (even) and antisymmetric (odd) frequencies, and
can be written for these frequencies in a single form.
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This article researches the normal vibrations of the elastic bottom of a rigid rectan-
gular tank with an ideal incompressible liquid that completely fills it. It is shown that
the frequency equation is divided into two equations describing symmetric and anti-
symmetric frequencies. For these frequencies, an approximate formula is obtained,
from which the approximate conditions for the stability of coupled vibrations of an
elastic foundation and a liquid follows. Exact stability conditions are obtained. The
stability conditions of the static approach coincide with the exact stability conditions
of the dynamic approach.

2 FORMULATION OF THE PROBLEM

Let us consider small coupled plane vibrations of the elastic bottom of a rigid rect-
angular tank with an ideal and incompressible liquid. The elastic bottom is presented
in the form of a thin rectangular plate with flexural rigidity D, subjected to tensile
(T > 0) or compressive (T < 0) forces in the median surface. The rectangular tank
width b (b = 2a) and height h is filled with a liquid with density ρ. The rectangular
tank of width b (b = 2a) and height h is filled with a liquid of density ρ. The coor-
dinate system Oxyz is such that the plane Oxy lies on the undisturbed surface of the
plate, the axis Oy is directed along its middle of the tank, and the axis Oz is opposite
to the acceleration vector of gravity ḡ (Fig. 1).
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Fig. 1: A rigid rectangular tank with a liquid and an elastic bottom in the form of a
plate.

Oscillations of the plate and liquid are considered in a linear formulation, assum-
ing that their vibrations are inseparable, and the motion of the liquid is potential.
Equations of plane vibrations of an elastic plate and a liquid have the form [1, 4]

k0
∂2W

∂t2
+D

∂4W

∂x4
− T ∂

2W

∂x2
− gρW = −

∞∑
n=1

anẄn

kn
ψn +Q+ P0,(1)
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a∫
−a

Wdx = 0, Wn =
1

N2
n

a∫
−a

Wψndx

with boundary conditions

(2) W
∣∣∣
x=±a

= 0,
dW

dx

∣∣∣
x=±a

= 0.

Here k0 = ρ0h0; W (x, t), ρ0, h0 are, respectively, normal flexure, density and thick-
ness of the plate; an = ρ cothκn, κn = hkn, kn = πn/b, ψn(x) = cos kn(x+ a),

N2
n =

∫ a

−a
ψ2
ndx = a; Q is an arbitrary time function, P0 is a preset external pressure

on the elastic bottom.

3 NORMAL COUPLED OSCILLATIONS OF THE ELASTIC PLATE AND A LIQUID

To find the eigenfrequencies of the coupled oscillations of the elastic plate and the
liquid, we set

W (x, t) = w (x) eiωt, Q = Q̃eiωt, P0 = P̃0e
iωt.

Considering (1) and (2), we obtain the boundary value problem

d4w

dx4
− pd

2w

dx2
− qw =

ω2

D

∞∑
n=1

anwn

kn
ψn + C,(3)

wn =
1

a

a∫
−a

wψndx,

a∫
−a

wdx = 0,(4)

w
∣∣∣
x=±a

= 0,
dw

dx

∣∣∣
x=±a

= 0,(5)

where p = T/D, q = (k0ω
2 + gρ)/D > 0, C = (Q̃+ P̃0)/D.

We look for the solution of the Eq. (3) in the form of the general solution of the
homogeneous equation and a particular solution of the inhomogeneous one

(6) w =

4∑
k=1

A0
kw

0
k +

∞∑
n=1

C̃nψn + w0.

Here w0
k = {sinh p1x, cosh p1x, sin p2x, cos p2x}, p21,2 = ±p/2+

√
p2/4 + q; A0

k,
C̃n and w0 unknown constants.
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We will represent C̃n and w0 through unknown constants A0
k. To do this, we

substitute (6) into Eq. (3) in the first relation (4)

(7) C̃n = ω2 an
kndn − ω2an

4∑
k=1

A0
kE

0
kn, w0 = −

4∑
k=1

w̃0
kA

0
k,

where

dn = (Dk2n + T )k2n − gρ− k0ω2,

w̃0
k =

1

2a

a∫
−a

w0
kdx =

{
0,

sinh p̃1
p1

,
sin p̃2
p2

}
,

E0
kn =

1

a

a∫
−a

w0
kψndx,

E0
1n =

p1 cosh p̃1
a(k2n + p21)

[(−1)n − 1],

E0
2n =

p1 sinh p̃1
a(k2n + p21)

[(−1)n + 1],

E0
3n =

p2 cos p̃2
a(k2n − p22)

[(−1)n − 1],

E0
4n = − p2 sin p̃2

a(k2n − p22)
[(−1)n + 1],

p̃i = api.

(8)

Taking into account relation (7), the final expression for the shape of the flexure
of the plate (6) will take the form

(9) w =
4∑

k=1

(
w0
k − w̃0

k − ω2
∞∑
n=1

anE
0
kn

ω2ãn − knd̃n
ψnBrig)A0

k.

Here ãn = an + knk0, d̃n = (Dk2n + T )k2n − gρ.
From the boundary conditions for plate fixing (5), there are four linear homoge-

neous equations with respect to unknowns A0
k

4∑
k=1

(
B1k − ω2

∞∑
n=1

αnE
0
knB

∗
1n

)
A0

k = 0,

4∑
k=1

C0
1kA

0
k = 0,

4∑
k=1

(
B2k − ω2

∞∑
n=1

αnE
0
knB

∗
2n

)
A0

k = 0,

4∑
k=1

C0
2kA

0
k = 0,

(10)
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where

Bjk = (w0
k − w̃0

k)
∣∣∣
x=±a

, B∗jn=

{
1, j=1, (x = −a)

(−1)n, j=2, (x = a)
, C0

jk =
dw0

k

dx

∣∣∣
x=±a

,

αn = an/(ω
2an − kndn) = an/(ω

2ãn − knd̃n).

The frequency equation of the natural oscillations of the elastic plate and the liquid
is obtained from the equality to zero of the determinant of the homogeneous system
(10)

(11)
∣∣∣∣∣∣∣Cqk

∣∣∣4
q,k=1

∣∣∣∣ = 0.

Here

C11 = sinh p̃1 − ω2
∞∑

m=1

α2m−1E
0
1,2m−1,

C12 = cosh p̃1 −
sinh p̃1
p1

− ω2
∞∑

m=1

α2mE
0
2,2m,

C13 = sin p̃2 − ω2
∞∑

m=1

α2m−1E
0
3,2m−1,

C14 = cos p̃2 −
sin p̃2
p2
− ω2

∞∑
m=1

α2mE
0
4,2m.

C21 = p1 cosh p̃1, C22 = −p1 sinh p̃1, C23 = p2 cos p̃2,

C24 = −p2 sin p̃2, C31 = −C11, C32 = C12, C33 = −C13,

C34 = C14, C41 = C21, C42 = −C22, C43 = C23, C44 = −C24.

(12)

Using the expansion of the functionsw0
k in series with respect to complete and orthog-

onal system of functions ψn, the coefficients C11, C12, C13 and C14 can be rewritten
as

C11 =
∞∑

m=1

β2m−1E
0
1,2m−1, C12 =

∞∑
m=1

β2mE
0
2,2m,

C13 =

∞∑
m=1

β2m−1E
0
3,2m−1, C14 =

∞∑
m=1

β2mE
0
4,2m,

(13)

where βn = 1− ω2αn = −kndn/
(
ω2ãn − knd̃n

)
.
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It follows from the expression E0
kn the relations (8) that Eq. (11) can be written

in the form

(14)
(
p2 cos p̃2

∞∑
m=1

β2m−1E
0
1,2m−1 − p1 cosh p̃1

∞∑
m=1

β2m−1E
0
3,2m−1

)
×
(
−p1 sinh p̃1

∞∑
m=1

β2mE
0
4,2m − p2 sin p̃2

∞∑
m=1

β2mE
0
2,2m

)
= 0.

Taking into account relations (8) and the equality

(k2n + p21)(k
2
n − p22) =

1

D
dn ,

the expressions

p2 cos p̃2E
0
1,2m−1 − p1 cosh p̃1E

0
3,2m−1 and − p1 sinh p̃1E

0
4,2m − p2 sin p̃2E

0
2,2m

take the form

p2 cos p̃2E
0
1,2m−1 − p1 cosh p̃1E

0
3,2m−1 = −2

a
p1p2 cosh p̃1 cos p̃2

p22 − p21
d2m−1

D,

− p1 sinh p̃1E
0
4,2m − p2 sin p̃2E

0
2,2m =

2

a
p1p2 sinh p̃1 sin p̃2

p21 − p22
d2m

D.

− p1 sinh p̃1E
0
4,2m − p2 sin p̃2E

0
2,2m =

2

a
p1p2 sinh p̃1 sin p̃2

p21 − p22
d2m

D.

(15)

Substituting expressions (15) into Eq. (14), we obtain a simplified frequency equa-
tion:

(16)
∞∑
n=1

kn

ω2ãn − knd̃n
= 0.

Thus, the frequency Eq. (14) splits into two equations describing odd (n = 2m−
1) and even (n = 2m) frequencies and can be written in a single form for these
frequencies (16). It should be noted that this simplification was achieved due to
expansion of a function w0

k in a series with respect to the complete and orthogonal
system of Eigen-functions ψn(x). Normal modes of free oscillations of the plate will
be found from relations (9) and (10).

The form of equation (16) does not change when the plate degenerates into a
membrane (D = 0, T > 0 and d̃n = Tk2n − gρ). In this case, Eq. (16) is the same as
the equation of work [1].
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The left-hand part of Eq. (16) is a monotonically increasing function of the pa-
rameter ω2 on the intervals {knd̃n/ãn, kn+1d̃n+1/ãn+1} (n = 1, 2, . . .), the func-
tion takes on its values from −∞ to ∞. Therefore, between two successive values
knd̃n/ãn there only one root of Eq. (16). This determines in advance the intervals, in
which the natural frequencies are located. On the increase of number of terms of the
series, the previous roots will be refined and new ones will appear. Squares of high
frequencies (n� 1) will be little different from the magnitude

ω2
n = kn

(Dk2n + T )k2n − gρ
ρ cothκn + knk0

.

It follows from this equality that Dk2n + T > gρ/k2n, the addiction to ω2
n depending

on D and T is linear, the greatest value ω2
n will be when k0 = 0, i.e. for the inertia-

free plate. Square of frequencies ω2
n are slightly dependent on the filling depth h and

decrease with its reduction. Thus, the problem under consideration has an infinite
discrete spectrum of eigenvalues ω2

l , which are the roots of Eq. (16), and the corre-
sponding eigenfunctions wl(x) form a complete orthogonal system of functions on
the segment [−a, a].

However, the problem under consideration has a number of physical features. In
order that there is no rupture of continuity (formation of cavitation), the pressure
inside the liquid must be non-negative. For this, the external pressure on the lower
elastic foundation P0 should not be less than the value g(ρh + k0). This inequality
does not take into account the magnitude of the plate bending stiffness D and tension
T . Critical values of the bending stiffness and the tension will be found from the
stability conditions of the vibrations of the plate and liquid.

4 APPROXIMATE AND ACCURATE CONDITIONS OF STABILITY OF COUPLED

OSCILLATIONS OF THE PLATE AND LIQUID. DYNAMIC APPROACH

If we retain two terms in the series of equation (16), then we obtain an approximate
frequency equation, whose solution in dimensionless variables for odd (n = 1, 3) and
even (n = 2, 4) frequencies, respectively, takes the form

Ω2 =
2(5π2γ − g̃ + 41π4)

3 cothπh̃+ coth 3πh̃+ 6πk̃0
π,

Ω2 =
2(10π2γ − g̃ + 136π4)

2 coth 2πh̃+ coth 4πh̃+ 4πk̃0
π.

(17)

Here Ω2 = ω2ρb3/D, γ = Tb2/D, h̃ = h/b, k̃0 = k0/ρb, g̃ = ρgb4/D.
It follows from formulas (16) that the dependence of the square of a dimension-

less frequency on a dimensionless γ is linear, the inertia-free plate has the greatest
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frequency, frequencies almost do not dependent on the filling depth at h̃ > 1 and
decrease with depth decreasing.

From the inequality Ω2 > 0 we obtain the approximate stability conditions for
the oscillations of the plate and the liquid

5π2γ + 41π4 > g̃ (n = 1, 3),

10π2γ + 136π4 > g̃ (n = 2, 4).
(18)

It follows from (18) that under compressive stresses (T < 0), stability conditions
(18) worsen.

At D = 0 and T > 0 (the case of the membrane), formulas (17) – (18) take the
form [1, 4]:

Ω2 =
6π(5π2T̃ − 1)

3 cothπh̃+ coth 3πh̃+ 6πk̃0
(n = 1, 3),

Ω2 =
8π(10π2T̃ − 1)

2 coth 2πh̃+ coth 4πh̃+ 4πk̃0
(n = 2, 4).

(19)

T̃ >
1

5π2
≈ 0.025325 (n = 1, 3),

T̃ >
1

10π2
≈ 0.0123819 (n = 2, 4).

(20)

Here Ω2 = ω2b
/
g, T̃ = T/gρb2 > 0.

To clarify conditions (18), we proceed in the same way as in [1, 4]. In Eq. (16)
we set ω2 = 0 and solve the resulting equation with respect to the critical values
of the parameters. When ω2 = 0, Eq. (16) takes the form

∑∞
n=1 1/d̃n = 0, or in

dimensionless variables

(21)
∞∑
n=1

1

n4 + βn2 − α4
= 0,

where α4 = ρb4
/
Dπ4 > 0, β = Tb2

/
Dπ2.

At T = 0, equation (21) can be rewritten as follows:

(22)
∞∑
n=1

1

n4 − α4
= 0.

Number series
∑∞

n=1 1/(n4 − α4) = 0 for odd (n = 2m − 1) and even (n = 2m)
values n can be represented as
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∞∑
m=1

1

(2m− 1)4 − α4
= π

tanπα/2− tanhπα/2

8α3
,

∞∑
m=1

1

(2m)4 − α4
= −ππα cotπα/2− πα cothπα/2− 4

8α4
.

(23)

Taking into account (23) the first root of Eq. (22) with n = 2m − 1 has the form
πα/2 = 3.926602312, from which the updated stability condition follows:

(24) D > 2.62913× 10−4gρb4.

Taking into account (23) the first root of Eq. (22) with n = 2m has the form
πα/2 = 5.2676575303 from which the updated stability condition follows:

(25) D > 8.11725× 10−5gρb4.

Approximate conditions prescribed inequality (18) for n = 1, 3 and n = 2, 4
when T = 0, respectively, can be written as

(26) D > 2.50390× 10−4gρb4, D > 7.54852× 10−5gρb4.

It is seen from formulas (24) – (26) that the approximate value of critical bending
stiffness for asymmetric frequencies is 0.952 times lower, and for symmetric fre-
quencies it is 0.930 times lower. It should be noted that proximity of the approximate
value and the exact takes place, taking into account two terms of the series we obtain
sufficient accuracy for practice.

The numerical series
∑∞

n=1 1/(n4+βn2−α4) = 0 for β 6= 0 has a more complex
representation, which complicates its further study.

5 STATIC STABILITY CONDITIONS FOR THE EQUILIBRIUM POSITION OF THE

PLATE AND LIQUID. STATIC APPROACH

In the case of a static analysis of the perturbation problem, we have

d4W

dx4
− pd

2W

dx2
− qW = C̃,(27)

W
∣∣∣
x=±a

= 0 ,
dW

dx

∣∣∣
x=±a

= 0 ,

a∫
−a

Wdx = 0,(28)

where p = T/D, q = gρ/D, C̃ = (P0 +Q)/D.
Equation (27) has a solution

(29) W = A1 cosh p1x+A2 sinh p1x+A3 cos p2x+A4 sin p2x+ C.
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Here C = −P0 +Q)/ρg, p21,2 = ±p/2 +
√
p2/4 + q.

The constant Q is unknown. Substituting (29) into the boundary conditions and
the incompressibility condition for the liquid (28), we obtain a homogeneous system
of equations with respect to unknown Ak (k = 1, 4) and C

A1 cosh p̃1 −A2 sinh p̃1 +A3 cos p̃2 −A4 sin p̃2 + C = 0,

−A1p1 sinh p̃1 +A2p1 cosh p̃1 +A3p2 sin p̃2 +A4p2 cos p̃2 = 0,

A1 cosh p̃1 +A2 sinh p̃1 +A3 cos p̃2 +A4 sin p̃2 + C = 0,

A1p1 sinh p̃1 +A2p1 cosh p̃1 −A3p2 sin p̃2 +A4p2 cos p̃2 = 0,

A1sinh p̃1/p1 +A3sin p̃2/p2 + Ca = 0,

(30)

where p̃i = pia.
For existence of nonzero solution of the homogeneous system (30) its determinant

must be equal to zero

(31) (p1 tan p̃2 − p2 tanh p̃1)
(
p1 cot p̃2 − p2 coth p̃1 −

p21 + p22
ap1p2

)
= 0.

Equation (31) splits into two equations

p1 tan p̃2 − p2 tanh p̃1 = 0 and

p1 cot p̃2 − p2 coth p̃1 −
p21 + p22
ap1p2

= 0.
(32)

The first equation describes asymmetric static deflections of the plate, and the
second describes symmetric ones.

At T = 0 (p1 = p2 =
√
q = απ/b) these equations coincide with the Eqs. (23).

It should be noted that the values of critical stiffness found according to the static
approach coincide with the exact values obtained by the dynamic approach. Thus, the
simple static approach makes it possible to determine exactly the stability conditions
for coupled oscillations of a plate and a liquid.

6 SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

Based on the analytical and numerical studies, we can conclude the following:
1. Natural oscillation frequencies of the plate and liquid for asymmetric and sym-

metric frequencies are presented in a single form.
2. An approximate formula for high frequencies is obtained. The dependence of

the square of the frequencies on the flexural rigidity and the tension is linear. The
highest frequency value will occur for an inertia-free plate. Frequencies decrease
with the liquid depth decreasing.
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3. Taking into account two terms of the series, an approximate formula is obtained
for a square of dimensionless frequency. The main conclusions from this formula
coincide with the results obtained for high frequencies.

4. The approximate stability conditions for the coupled vibrations of the plate and
liquid are derived. These conditions are independent of the depth of the liquid and
the mass of the plate.

5. Exact stability conditions are obtained. There is a closeness between the ap-
proximate value and the exact one. The stability conditions of the static approach
coincide with the exact stability conditions of the dynamic approach.

6. It is shown that the approximate value of the critical bending stiffness for
asymmetric frequencies are 0.952 times lower, and for symmetric frequencies they
are 0.930 times lower. Thus, taking into account two terms of the series gives accu-
racy sufficient for practice.

7. Using numerical calculations we establish that with the increase of the number
of terms in series of the frequency equation the previous frequencies are refined and
new ones appear. To obtain acceptable accuracy, it is enough to take into account
10-20 terms of the series.

In the future, it is planned to consider this problem, taking into account the elastic
upper and lower bases and study the frequency spectrum and stability conditions.
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