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Abstract: An increase in world population requires growth in food production. Wheat is one
of the major food crops, covering 21% of global food needs. The food supply issue necessitates
reliable mathematical methods for predicting wheat yields. Crop yield information is necessary for
agricultural management and strategic planning. Our mathematical model was developed based on a
three-year field experiment in a semi-arid climate zone. Wheat yields ranged from 4310 to 6020 kg/ha.
The novelty of this model is the inclusion of some stochastic data (weather and technological). The
proposed method for wheat yield modeling is based on the theory of random sequence analysis. The
model does not impose any restrictions on the number of production parameters and environmental
indicators. A significant advantage of the proposed model is the absence of limits on the yield
function. Consideration of the stochastic features of wheat production (technological and weather
parameters) allows researchers to achieve the best accuracy. The numerical experiment confirmed
the high accuracy of the proposed mathematical model for the prediction of wheat yield. The mean
relative error (for the third-order polynomial model) varied from 1.79% to 2.75% depending on the
preceding crop.

Keywords: wheat production; mathematical model; cropping system; forecast

1. Introduction

The world population is increasing and it is predicted to exceed 9 billion by 2050 [1].
Agriculture is required to significantly increase (up to 110%) food production to meet food
demands [2,3]. Thus, population growth has a negative impact on food resources [4]. The
food and agricultural organization (FAO) states that food security has become an urgent
problem for a number of countries [5,6].

Wheat is ranked third among food crops [7]. This crop covers around 21% of the
world’s food demand. Around 220 million hectares of arable land worldwide are used
for wheat cultivation [8]. Total wheat production exceeds 700 million tons [9,10]. The
European Union is ranked first in wheat production [11]. China is a world leader in wheat
production. Among European countries, Germany, France, and Ukraine are in the top ten
wheat producers [12].
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In the last decade, there has been a decrease in wheat production [13–16]. Climate
change and biofuel production are among the primary problems of production growth.
Average air temperature is rising [17]. Agricultural production, including wheat production,
is sensitive to climate change, which affects crop yields [18–21]. The climate becomes
drought. Thereby, irrigated agriculture is expected to expand. This kind of agriculture
currently utilizes around 20% of arable land and produces up to 40% of total food [22]. The
production of biofuels has increased. Reducing greenhouse gas emissions, diversifying
vehicle fuels, and promoting renewable energy are the main reasons for the above [23]. The
European Union has determined main targets to mitigate climate change. They include
a 20% increase in renewable energy consumption [24]. Biofuels (based on crop origin)
are an alternative to fossil fuels [25,26]. Their use in transport facilities is a priority for
reducing carbon dioxide emissions in many countries [27]. In 2017, the European Union
used around 7% of the total arable land for industrial crops [28]. Thus, biofuel production
reduces available land for food production.

Agriculture must provide enough food for the growing population. Therefore, agri-
cultural management and policymakers should use forecasting methods for crop produc-
tion [6,29]. Statistics, modeling, time series, learning machine, etc., are used for predic-
tion [30]. Reliable wheat yield forecasting is imperative. These methods help farmers to
monitor yield and identify threats (weather conditions, fertilizer management, etc.) [31].
Crop yield information is necessary for strategic planning [32].

Yield is an important indicator for characterizing grain production. Yield forecasting
is an important task for any country. The accuracy of forecasting determines the solution of
some problems, including organizing reserve funds of food, volumes of grain storage, etc.
It affects the formation of an effective foreign trade policy (including the import/export
plan and price, optimum management of growing crops). The yield indicator is also the
basis for assessing the profitability of agricultural companies. Therefore, estimating yield is
an important tool for effective management.

In Ukraine, since 1990, wheat yield has ranged from 1980 to 4160 kg/ha [33]. It is
behind the world’s leaders; 7530 kg/ha in Germany [34]. Irrigated winter wheat yield is
in the range of 3550 to 5290 kg/ha [35]. In the world, irrigated winter wheat yield is up
to 7990 kg/ha in arid and semi-arid zones [36]. Thus, there are reserves for increasing
yields. It is necessary to optimize the use of available energy and material resources to
realize these reserves. It is important for the arid and semi-arid zones of both Ukraine and
other countries.

Significant weather and economic instability dictate the importance of yield forecasting.
Crop yield forecasting is difficult because crop formation is associated with factors such as
agricultural practice, weather conditions, the characteristics of biological systems, etc.

Currently, various methodical approaches to yield forecasting have been developed
and applied in practice:

1. The analysis of trends and cyclicality in yield dynamics [37,38];
2. The identification of the year-analog [39–41];
3. The building of regression models based on a set of statistics obtained on the basis of

remote and meteorological observations [38,42];
4. Modeling [38];
5. The analysis of synoptic processes [43].

The approaches of the first, second, and fifth groups are not accurate enough. Groups
3 and 4 are the most widely used approaches. In most cases, meteorological data are used to
build regressions or to model plant growth. This type of forecast does not take into account
the actual state of the soil, the use of fertilizers, and other chemicals. Dynamic models are
most widely used in practice [5]. However, they do not take into account the entire history
of changes in yields and the conditions of grain production, which significantly limit the
accuracy of existing models.

The main feature of yield is its stochastic changes. In this regard, the theory of ran-
dom functions and random sequences must be used to predict crop yields. Methods and
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algorithms of the above theory take into account various random factors (precipitation,
air temperature, soil temperature, etc.) [44], as well as the values of deterministic param-
eters (soil structure, crop variety, tillage practices, dosage and composition of fertilizers,
etc.) [45–49]. Crop yields have been studied using simulation models [50,51]. These models
most accurately reveal the impact of agronomic factors on crop yields [52–54].

However, practitioners and authorities require mathematical models for different
crops, climate zones, tillage practices, etc. The purpose of this article is to develop a
mathematical model for predicting the winter wheat yield in a semi-arid zone. The novelty
of this study is the development of a mathematical model based on stochastic data, such
as precipitation, plant density, fertilizer, micro fertilizers, the effective temperature sum of
the autumn vegetation, the amount of water used for irrigation, and preceding crops. This
model has been developed for a semi-arid zone. Its modeling algorithm was built based on
random non-stationary sequences of input variables. The main requirement for the method
developed is the absence of any significant restrictions on the random process of grain crop
yields. The maximum consideration of stochastic characteristics will allow us to achieve
the best accuracy of the modeling problem.

This study is based on previous publications [55–57].

2. Materials and Methods

This study focuses on the forecasting of winter wheat yield and proposes the use
of a methodology combining statistical analysis and performing field experiments. This
methodology comprises the following steps: the collection of field experiment data; the
modeling of yield as a function of selected parameters. Field experiments were performed
in the Mykolaiv region (Ukraine).

2.1. Field Experiment

The experiments were carried out in 2019 and 2020 in the Mykolaiv province, Ukraine
(46◦58′06” N; 31◦42′39” E). The area of the experimental field is equal to 10 ha. Our
experiment had a randomized design with three replications. Rapeseed and corn were
preceding crops for winter wheat. The soil had the following properties: pH—from
6.8 to 7.2; organic carbon—from 2.9 to 3.2 g·kg−1; phosphorus—from 31 to 38 mg·kg−1;
potassium—from 332 to 525 mg·kg−1; bulk density—1380 kg·m−3. Winter wheat was
grown under practice that is conventional for southern Ukraine (Table 1).

Table 1. Production of winter wheat.

Farming Operation Description

Tillage

Skimming (6–8 cm)
Cultivation (8–10 cm)

Harrowing
Pre-seeding cultivation (3–4 cm)

Sowing 25 September–10 October; 4.0, 4.5 and 5 million seeds per hectare
Fertilization N—from 60 to 120 kg/ha; P—15 kg/ha; K—15 kg/ha

Micronutrient fertilizers
• I scheme: Fitohelp (0.5 L/ha) + Liposam (0.2 L/ha)
• II scheme: Quantum-grain (1.0 L/ha) + Liposam (0.2 L/ha)

Irrigation

• I scheme: pre-sowing irrigation—600 m3/ha, other
irrigation—1000 m3/ha

• II scheme: pre-sowing irrigation—700 m3/ha, other
irrigation—900 m3/ha

Weed control Chemicals: 0.025 kg/ha (glyphosate); 4 kg/ha (PIK)
Harvesting June–July

The experiments were carried out over two years on irrigated lands. A field experiment
was established by the method of randomized split plots. All studies, observations, and
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samplings were performed in quadruplicate. We used a sequential arrangement of plots
in one tier. They were located in relation to organizational and technical factors: the
convenience of tillage, fertilization, sowing, harvesting, etc. The total number of plots was
32. We investigated six factors in the field experiments. Factor A was the preceding crops
(rapeseed and corn); factor B was the plant density, million plants per hectare: 4.0, 4.5, and
5.0; factor C was the fertilizer type and dosage (N:P:K); factor D was the micronutrient
fertilizer type and dosage; factor E was the irrigation scheme; factor F was the total effective
temperature of the autumn growing season. The sum of average air temperatures in
autumn is the sum of average daily temperatures above +5 ◦C. This indicator characterizes
the amount of heat necessary for the plant development process. Wheat during the autumn
vegetation should gain a sum of effective temperatures from 300 to 350 ◦C. During the
three-year experiments, differences in precipitation were observed. This study considered
the influence of annual precipitation on wheat yield.

A preceding crop leaves nutrients in the soil. Thus, preceding crops influence yield.
Two preceding crops (maize and rapeseed) were the limitation of this study. We chose
maize because it is a widespread crop, and its production is around 50% of gross national
grain production. Rapeseed is one of the best preceding crops.

2.2. Measurement of Yield

The method of mechanized harvesting was used to determine winter wheat yield.
Wheat grain was harvested by a Sampo 500 combine harvester. Harvesting was carried out
from a selective typical plot of the field. The yield was calculated by the equation:

Yd = MG · PA−1, kg/ha, (1)

where MG is the mass of wheat grain from a plot, kg; PA is the area of a plot, ha.

2.3. Methodology for the Synthesis of Winter Wheat Yield Models

The formation and use of models of changes in winter wheat yield indicators involves
the implementation of the following stages:

Stage 1. The collection of statistical data on grain yields and cultivation conditions;
Stage 2. The estimation of moment functions M

[
Xλ(ν)Xs(i)

]
based on obtained statistical data;

Stage 3. The determination of the optimal order of stochastic connections of the random
vector {X};
Stage 4. The calculation of the characteristics of the canonical distribution of the random
vector {X};
Stage 5. The calculation of the parameters of the mathematical model;
Stage 6. The calculation of productivity indicators based on the predictive model under
different initial conditions of production;
Stage 7. The assessment of yield modeling accuracy.

2.4. Verification of a Developed Mathematical Model

The developed mathematical model was verified using such indicators as the mean
relative error, the standard deviation of error, and the coefficient of error variation. A mean
relative error is

δ =

n
∑

i=1

∣∣∣Ymi−Yei
Yei

∣∣∣ · 100%

n
, (2)

where Ymi is the ith yield calculated by the mathematical model, kg/ha; Yei is the ith
experimental yield, kg/ha; n is the number of experimental yields.
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To find the standard deviation, we used the following formula

σ =

√√√√√ n
∑

i=1
(δi − δ)

2

n
, (3)

where δi is the ith error, %.
Finally, the coefficient of error variation is equal to

CV =
σ

δ
· 100%. (4)

3. Results and Discussion
3.1. Field Experiment

Three-year field experiments on winter wheat growing were carried out on a farm of
Mykolaiv National Agrarian University (the Mykolaiv region). The results are presented in
Table A1 (preceding crop—maize) and Table A2 (preceding crop—rapeseed). Wheat yields
were in the range from 4310 kg/ha to 6020 kg/ha. We can see that rapeseed was a better
preceding crop than maize. This predecessor provided higher yields (from 4440 kg/ha to
6020 kg/ha). It was 3% higher compared to maize. Experimental data were used to develop
our mathematical model.

We analyzed the impact of changing each factor (variable) on the yield. The results
of the analysis are presented in Table 2. We assumed that all variables, except for the one
being studied, are constants. As can be seen, nitrogen fertilizers had the strongest effect on
yield. The irrigation scheme had the least influence. The sum of average air temperatures
in autumn ranked second, with a value of −9.33%. Plant density and a preceding crop had
approximately the same effect on the yield.

Table 2. The weight of each variable.

Variable Unit
Range Average

Minimum
Average

Maximum
Relative

Increase, %Minimum Maximum

preceding crop - maize rapeseed 4953.89 5151.67 3.99
microfertilizer - I II 5000.17 5105.39 2.10
nitrogen kg/ha 60 120 4830.42 5956.88 23.32
plant density mln/ha 4 5 4921.33 5155.25 4.75
the effective temperature sum of
the autumn vegetation

◦C 345 369 5265.67 4774.42 −9.33

irrigation scheme m3/ha 600 + 1000 700 + 900 5017.50 5088.06 1.41

We analyzed the variables that most strongly affect yield: nitrogen, the effective tem-
perature sum of the autumn vegetation, and plant density (Figures 1–3). Linear functions
were built to determine their slopes. We can see that rapeseed was a better preceding
crop for winter wheat. Rapeseed allows farmers to obtain higher yields. Slopes of linear
functions varied from −22.17 to 8.64 (Table 3). The only variable that had a negative slope
was the effective temperature sum of the autumn vegetation. An increase in the effec-
tive temperature sum of the autumn vegetation decreased winter wheat yield. However,
fertilizer management could offset this negative impact.
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Table 3. The slope of a linear function.

Variable
Preceding Crop

Maize Rapeseed

Nitrogen 8.68 6.24
The effective temperature sum
of the autumn vegetation −22.17 −19.27

Plant density 0.23 0.24

3.2. Canonical Decomposition of a Random Sequence of Yield Index and Characteristics of
Production Conditions

To form realizable algorithms for modeling random sequences, certain restrictions are
imposed on the properties of the sequence under study. For example, it is assumed that:

(a) the sequence under study is normal (has a normal probability distribution law) or a
stationary sequence generated by a normal one in nonlinear systems;

(b) the sequence is non-stationary, but with stationary increments;
(c) the sequence is Markovian, etc.

For these classes of random sequences, there are quite efficient modeling algorithms.
Therefore, to obtain a random sequence with a given correlation matrix (without taking
into account distribution densities), the method of linear transformations is successfully
used [58,59]. One of the varieties of the method of linear transformations—the canonical
decomposition of V.S. Pugachev [60]—allows us to form the values of a sequence of random
variables that are dependent within the framework of linear relationships, taking into
account their one-dimensional distribution densities. The Fourier series is widely used to
model a stationary random sequence [61]; the apparatus for modeling stationary normal
sequences is well developed [62] (there are two operators for generating values and several
approaches have been developed [63,64] for determining their parameters); the simplest
solution is the problem of modeling Markov sequences [65], which is reduced to the method
of conditional distributions for the simplest case—the use of only a two-dimensional
distribution density. However, the use of simplifying assumptions about the properties of a
random sequence in the formation of a modeling algorithm naturally reduces the accuracy
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of the representation of a random sequence. The most universal from the point of view
of the restrictions (linearity, Markov property, stationarity, monotonicity, scalarness, etc.),
which are superimposed on the properties of sequences of random variables, is the method
based on a non-linear canonical decomposition [66].

The subject of study is a random sequence {X(i)},i = 1, I, where X(i), i = 1, I − 1—
random values that determine the conditions of production of grain crops (temperature,
amount of precipitation, number of sunny days, volume of mineral and organic fertilizers,
etc.), X(I)—indicator of grain crop yield.

The nonlinear canonical decomposition of the investigated vector {X(i)}, can be
written as [67]:

X(i) = M[X(i)] +
i

∑
ν=1

N

∑
λ=1

W(λ)
ν ϑ

(λ;1)
ν (i), i = 1, I, (5)

The random coefficients W(λ)
ν and non-random coordinate functions ϑ

(λ;h)
ν (i) of the

mathematical yield model (1) are determined by the recurrence relations:

W(λ)
ν = Xλ(ν)−M

[
Xλ(ν)

]
−

ν−1
∑

µ=1

N
∑

j=1
W(j)

µ ϑ
(j;λ)
µ (ν)−

−
λ−1
∑

j=1
W(j)

ν ϑ
(j;λ)
ν (ν), λ = 1, N, ν = 1, I;

(6)

ϑ
(λ;h)
ν (i) =

M
[
W(λ)

ν (Xh(i)−M[Xh(i)])
]

M
[{

W(λ)
ν

}2
] = 1

Dλ(ν)
{M
[

Xλ(ν)Xh(i)
]
−

−M
[
Xλ(ν)

]
M
[

Xh(i)
]
−

ν−1
∑

µ=1

N
∑

j=1
Dj(µ)ϑ

(j;λ)
µ (ν)ϑ

(j;h)
µ (i)−

−
λ−1
∑

j=1
Dj(ν)ϑ

(j;λ)
ν (ν)ϑ

(j;h)
ν (i)}, λ = 1, h, ν = 1, i, h = 1, N, i = 1, I.

(7)

Dλ(ν) = M
[{

W(λ)
ν

}2
]
= M

[
X2λ(ν)

]
−M2[Xλ(ν)

]
−

−
ν−1
∑

µ=1

N
∑

j=1
Dj(µ)

{
ϑ
(j;λ)
µ (ν)

}2
−

λ−1
∑

j=1
Dj(ν)

{
ϑ
(j;λ)
ν (ν)

}2
, λ = 1, N, ν = 1, I;

(8)

where M[ ] is the mathematical expectation; Dλ(ν) are the variances of the random coeffi-
cient W(λ)

ν , λ = 1, N, ν = 1, I.
Coordinate functions ϑ

(λ;h)
ν (i), ν = 1, i; λ, h = 1, N; i = 1, I are characterized by relations

ϑ
(λ;h)
ν (i) =

{
1, for (h = λ) ∧ (ν = i);
0, if (i <ν) ∨ ((h < λ) ∧ (ν = i)).

The nonlinear model (1) of the random vector {X} = X(i), i =1, I contains N arrays{
W(λ)

}
, λ = 1, N of uncorrelated centered random coefficients W(λ)

i , λ = 1, N, i = 1, I.
Each of these coefficients contains information about the corresponding value
Xλ(i), λ = 1, N, i = 1, I, and the coordinate functions ϑ

(λ;h)
ν (i), λ, h = 1, N, ν, i = 1, I

describe the probabilistic relations of the order λ + h between the point ν and i
(
ν, i = 1, I

)
.

Expression (5) provides an optimal description of the studied sequence
{X}(where X(i), i =1, I − 1 are the technological parameters; X(I) is the yield) according
to the criterion of the minimum mean square of the modeling error. Expression (1) is also
true if some stochastic relations of the random vector {X} = X(i), i =1, I are missing. In
this case, the corresponding coordinate functions take the value zero and these relations
are automatically excluded from the canonical decomposition.
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The legitimacy of the approach used to form representation (5) is confirmed by the
proposition that it is possible to construct a canonical decomposition of the sequence{

f1
(
Y1
)
, . . . , fn

(
Yn
)}

, where Yν, ν = 1, n is a vector random variable and fν(.), ν = 1, n is
a nonlinear function.

3.3. Predictive Model of Changes in Yield Indicators Depending on the Initial Conditions
of Production

The sequential fixation of known values xν(j) in the canonical decomposition (5) (the
values of random coefficients become known W(ν)

j ) using the mathematical expectation
operation obtains an extrapolation algorithm [67]:

m(µ,l)
x (h, i) =


M
[

Xh(i)
]

if µ = 0;

m(µ,l−1)
x (h, i) +

(
xl(µ)−m(µ,l−1)

x (l, µ)
)

ϑ
(l;h)
µ (i) if l 6= 1,

m(µ−1,N)
x (h, i) +

(
xl(µ)−m(µ−1,N)

x (l, µ)
)

ϑ
(1;h)
µ (i) if l = 1.

(9)

The expression m(µ,l)
x (h, i) = M

[
Xh(i)/xν(j), j = 1, µ− 1, ν = 1, N; xν(µ), ν = 1, l

]
(conditional expectation) for h = 1, l = N, µ = k is an optimal estimate m(k,N)

x (1, i) of the
future value x(I) of the yield indicator, provided that the values xν(j), ν = 1, N, j = 1, I − 1
are used to calculate this estimate; i.e., I − 1 indicators that characterize the conditions of
production of grain crops are known.

The expression for estimation m(k,N)
x (1, i) can be written in the following explicit

form [68]:

m(k,N)
x (1, i) = M[X(i)] +

k

∑
j=1

N

∑
ν=1

(xν(j)−M[Xν(j)])S(kN)
((j−1)N+ν)

((i− 1)N + 1), (10)

where S(α)
λ (ξ) =

{
S(α−1)

λ (ξ)− S(α−1)
λ (α)γk(i), if λ ≤ α−1;

γα(ξ), for λ = α;
(11)

γα(ξ) =

 β
(modN(α);1)
[α/N]+1 ([α/N] + 1), for ξ ≤ kN;

β
(modN(α);1)
[α/N]+1 (i), if ξ = (i− 1)N + 1.

(12)

where modN( ) is the division modulo N.

3.4. Synthesis of Models of Changes in Winter Wheat Yield

Based on statistical yield data from the period 2019–2021, as a result of conducting
experiments at the innovative training ground of the Ukrainian National Academy of
Sciences, it was determined that the main factors affecting winter wheat yield are as
follows [69–72]:

• average annual precipitation, (m);
• sowing rate, (million seeds/ha);
• mineral nutrition (N:P:K—nitrogen-phosphorus-potassium; kg/ha);
• microfertilizers (L/ha or kg/ha);
• sum of effective temperatures of autumn vegetation (◦C);
• volume of water used for irrigation (m3/ha).

That is, the random vector takes the form {X(i)},i = 1, 7: X(1)— amount of aver-
age annual precipitation; X(2)—sowing rate; X(3)—amount of mineral nutrition; X(4)—
amount of microfertilizer; X(5)—the sum of the effective temperatures of autumn vegeta-
tion; X(6)—volume of water used for irrigation; X(7)—winter wheat yield.
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It was determined that the most significant stochastic relations affecting the yield
index of winter wheat are relations of the third order: Xν(i)Xµ(j) 6= 0, i, j = 1, 7, ν, µ ≤ 3;
Xν(i)Xµ(j) = 0, i, j = 1, 7, ν, µ > 3 (the analysis of the ripening process was not per-
formed, therefore, the aftereffect interval in this case degenerates into a point: the moment
of harvesting).

Tables 4–9 show the values of the coordinate functions of the canonical decomposition.

Table 4. Coordinate functions β
(1)
1ν (i); ν, i =1.7 (preceding crop—maize).

0 1 2 3 4 5 6 7

1 0 1 2 3 4 5 6
2 1 1.00 0.18 −0.28 0.47 −0.21 0.59
3 2 0 1.00 0.75 0.33 0.45 −0.1
4 3 0 0 1.00 0.34 0.77 0.27
5 4 0 0 0 1.00 0.55 0.21
6 5 0 0 0 0 1.00 0.23
7 6 0 0 0 0 0 1.00

Table 5. Coordinate functions β
(2)
1ν (i); ν, i =1, 7 (preceding crop—maize).

0 1 2 3 4 5 6 7

1 1.00 −0.16 −0.12 0.34 −0.11 0.55 0.12
2 0 1.00 0.7 −0.22 0.33 −0.07 0.21
3 0 0 1.00 0.34 0.83 0.23 0.31
4 0 0 0 1.00 −0.79 0.11 −0.10
5 0 0 0 0 1.00 0.12 −0.15
6 0 0 0 0 0 1.00 0.21
7 0 0 0 0 0 0 1.00

Table 6. Coordinate functions β
(3)
1ν (i); ν, i =1, 7 (preceding crop—maize).

0 1 2 3 4 5 6 7

1 1.00 −0.11 0.11 0.27 −0.09 0.05 0.12
2 0 1.00 0.34 0.11 0.27 −0.02 −0.01
3 0 0 1.00 0.22 0.33 0.09 0.05
4 0 0 0 1.00 −0.22 0.09 0.05
5 0 0 0 0 1.00 0.11 −0.12
6 0 0 0 0 0 1.00 0.15
7 0 0 0 0 0 0 1.00

Table 7. Coordinate functions β
(1)
1ν (i); ν, i =1, 7 (preceding crop—rapeseed).

0 1 2 3 4 5 6 7

1 1.00 −0.33 0.55 0.43 −0.41 0.75 0.23
2 0 1.00 0.90 −0.41 0.97 −0.28 0.31
3 0 0 1.00 0.39 0.8 0.44 0.22
4 0 0 0 1.00 0.33 0.28 0.15
5 0 0 0 0 1.00 0.22 0.17
6 0 0 0 0 0 1.00 0.31
7 0 0 0 0 0 0 1.00
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Table 8. Coordinate functions β
(2)
1ν (i); ν, i =1, 7 (preceding crop—rapeseed).

0 1 2 3 4 5 6 7

1 1.00 0.18 −0.28 0.47 −0.21 0.59 0.22
2 0 1.00 0.75 0.33 0.45 −0.1 0.07
3 0 0 1.00 0.34 0.77 0.27 0.17
4 0 0 0 1.00 0.55 0.21 0.15
5 0 0 0 0 1.00 0.23 −0.12
6 0 0 0 0 0 1.00 0.37
7 0 0 0 0 0 0 1.00

Table 9. Coordinate functions β
(3)
1ν (i); ν, i =1, 7 (preceding crop—rapeseed).

0 1 2 3 4 5 6 7

1 1.00 −0.18 0.21 0.33 −0.11 0.11 0.07
2 0 1.00 0.44 0.21 0.37 −0.02 −0.11
3 0 0 1.00 0.24 0.39 0.19 0.21
4 0 0 0 1.00 0.44 0.19 0.07
5 0 0 0 0 1.00 0.17 0.09
6 0 0 0 0 0 1.00 0.21
7 0 0 0 0 0 0 1.00

Using the values of the coordinate functions, mathematical models of changing winter
wheat yield (t/ha) are formed:

The preceding crop is maize

X(7) = m(6.3)
k (1.7) = 4.902− 0.0152(X(1)−M[X(1)])− 0.0224(X(2)−M[X(2)])−

−0.0529(X(3)−M[X(3)]) + 0.0131(X(4)−M[X(4)])−
−0.006(X(5)−M[X(5)])− 0.0608(X(6)−M[X(6)])+
+0.0954

(
X2(1)−M

[
X2(1)

])
+ 0.1598

(
X2(2)−M

[
X2(2)

])
+

+0.0009
(
X2(3)−M

[
X2(3)

])
+ 0.0395

(
X2(4)−M

[
X2(4)

])
−

−0.0065
(
X2(5)−M

[
X2(5)

])
− 6.02× 10−5(X2(6)−M

[
X2(6)

])
−

−0.0075
(
X3(1)−M

[
X3(1)

])
− 0.0195

(
X3(2)−M

[
X3(2)

])
−

−2.524× 10−6(X3(3)−M
[
X3(3)

])
+ 0.0833

(
X3(4)−M

[
X3(4)

])
+

+0.0027
(
X3(5)−M

[
X3(5)

])
+ 2.304× 10−7(X3(6)−M

[
X3(6)

])
;

(13)

The preceding crop is rapeseed

Xp(7) = m(6.3)
p (1.7) = 5.044 + 0.0047(X(1)−M[X(1)])− 0.0353(X(2)−M[X(2)])+

+0.0794(X(3)−M[X(3)]) + 0.0105(X(4)−M[X(4)])−
−0.1734(X(5)−M[X(5)]) + 0.1192X(X(6)−M[X(6)])−
−0.462

(
X2(1)−M

[
X2(1)

])
+ 0.2187

(
X2(2)−M

[
X2(2)

])
+

−0.0008
(
X2(3)−M

[
X2(3)

])
+ 0.0336

(
X2(4)−M

[
X2(4)

])
−

−0.0091
(
X2(5)−M

[
X2(5)

])
+ 0.0002

(
X2(6)−M

[
X2(6)

])
−

−0.0926
(
X3(1)−M

[
X3(1)

])
− 0.0288

(
X3(2)−M

[
X3(2)

])
+2.96× 10−6(X3(3)−M

[
X3(3)

])
+ 0.0704

(
X3(4)−M

[
X3(4)

])
−

−0.0209
(
X3(5)−M

[
X3(5)

])
− 7.0703× 10−7(X3(6)−M

[
X3(6)

])
.

(14)
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In Formulas (13) and (14), the first, second, and third initial moments of random variables
X(i), i = 1.6 have the following values:

M[X(1)] = 3.706; M
[
X2(1)

]
= 13.779; M

[
X3(1)

]
= 51.56;

M[X(2)] = 4.5; M
[
X2(2)

]
= 20, 417; M

[
X3(2)

]
= 93.76;

M[X(3)] = 90; M
[
X2(3)

]
= 8700; M

[
X3(3)

]
= 891, 000;

M[X(4)] = 0.75; M
[
X2(4)

]
= 0.625; M

[
X3(4)

]
= 0.5625;

M[X(5)] = 6.5; M
[
X2(5)

]
= 42.5; M

[
X3(5)

]
= 279.5;

M[X(6)] = 356.33; M
[
X2(6)

]
= 127, 070; M

[
X3(6)

]
= 45, 348, 636.33.

3.5. Verification of the Developed Model

We determined the approximation error. Mean relative errors were analyzed for three
approximations: a linear model, a second-order polynomial model, and a third-order
polynomial model. The linear model had the highest mean relative error of 11.9942%. The
second-order polynomial model showed a mean error of 4.8582%. Therefore, the above
models are not recommended for use.

We revealed that the mean relative error depends on the preceding crop. When the
preceding crop was maize, the mean relative error for a third-order polynomial model was
1.7884%. Its value varied from 0.0056% to 7.2168%. The standard deviation was 1.4691.
The coefficient of variation was rather high, and it was equal to 82.15%. If the preceding
crop was rapeseed, the mean relative error was higher, 2.7532%. The standard deviation
was almost the same (1.4532). The coefficient of variation was 52.78%. Hence, the errors
varied in a wide range. Although, the mean relative error was of low value. Thereby, the
developed third-order polynomial model was proven to predict winter wheat yield.

The maximum relative error of 7.61% (the preceding crop was a rapeseed) was un-
der the following conditions: plant density—5.0 million per hectare, the effective tem-
perature sum of the autumn vegetation—345◦C, micro-fertilizer—scheme II, irrigation
scheme—600 + 1000, preceding crop—rapeseed, nitrogen—120 kg/ha. The minimum rel-
ative error of 0.021% was under the following conditions: plant density—4.5 million per
hectare, the effective temperature sum of the autumn vegetation—369 ◦C, micro-fertilizer—
scheme II, irrigation scheme—700 + 900, preceding crop—rapeseed, nitrogen—120 kg/ha
(Figure 4). The use of another preceding crop (maize) changed relative errors. The max-
imum relative error of 7.22% was at the plant density of 4.5 million per hectare and the
effective temperature sum of the autumn vegetation of 369 ◦C. The minimum relative error
of 0.0056% was observed at the plant density—4.0 million per hectare, the effective temper-
ature sum of the autumn vegetation—369 ◦C, and the second scheme of micro-fertilizer
(Figure 5).

To further verify the prediction ability of the developed mathematical model, we
applied it to five farms in the Mykolaiv region in 2021. Their actual yields ranged from
5025 to 5284 kg/ha. The relationship between the prediction and observation was found
to validate the accuracy of our model. Results are presented in Table 10. The developed
model produced an average accuracy of 2.48%. Errors varied from 1.48 to 4.03%.
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Table 10. Predicting for farms.

farm preceding
crop

nitrogen,
kg/ha

plant
density,
mln/ha

the effective
temperature sum of

the autumn
vegetation, ◦C

micro-
fertilizer

irrigation
scheme

actual
yield,
kg/ha

forecast,
kg/ha

error,
%

1 maize 120 5.0 355 I I 5244 5123 2.31
2 maize 115 5.0 355 I I 5017 5108 1.81
3 maize 120 4.5 355 I I 5180 5037 2.76
4 rapeseed 90 4.0 355 I I 5015 4941 1.48
5 rapeseed 90 4.5 355 I I 5284 5071 4.03

4. Conclusions

Wheat is an important food crop. Climate change and an increase in world population
has increased the importance of wheat yield forecasting. It is a principal problem for both
farmers and authorities.

In this study, proposed a mathematical method by which to solve a significant practical
problem of modeling winter wheat yields. The mathematical model was developed based
on the results of a three-year field experiment. The mathematical forecasting model can
use an arbitrary number of variables affecting the yield, preceding crops, fertilizers, plant
density, an irrigation scheme, the effective temperature sum of the autumn vegetation, and
micro-fertilizers. The structure and computational algorithm do not depend on the number
of variables and the order of the nonlinear stochastic model.

The modeling method can use various functional dependences of yield on random
factors (linearity, stationarity, Markovianity, monotonicity, etc.). The mathematical model
uses weather and technological stochastic indicators. It allows us to achieve the best
accuracy. The mean relative error does not exceed 2.75%; whereas a linear extrapolation
gives the mean relative error of 9–12%. Therefore, the only nonlinear model is suitable for
practical application.

Further studies are planned to develop a mathematical model for energy, environmen-
tal, and economic assessment of wheat cultivation as a function of agricultural practices
and weather conditions. They will build on our previous papers [55,73,74].

Author Contributions: Conceptualization, I.A. and V.H.; methodology, I.A. and O.D.; validation,
V.N., V.H. and M.T.; formal analysis, V.H., V.N. and T.C.; investigation, I.A., O.D. and V.N.; resources,
M.T. and T.C.; writing—original draft preparation, I.A. and V.H.; writing—review and editing, O.D.,
V.N. and H.T.; supervision, I.A., T.C. and H.T.; project administration, M.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the reviewers and editors for their valuable contributions
that significantly improved this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The results of the field experiments are presented in Tables A1 and A2.
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Table A1. Yields, kg/ha (preceding crop—maize).

#
Plant

Density,
mln/ha

Fertilizer,
N:P:K, kg/ha

Microfertilizers
Sum of Autumn

Effective
Temperatures

Irrigation

Fitohelp
(0.5 L/ha) +
Liposam
(0.2 L/ha)

Quantum-Grain
(1.0 L/ha) +
Liposam м
(0.2 L/ha)

600 m3/ha +
1000 m3/ha

700 m3/ha +
900 m3/ha

1.

4.0

60:15:15 I 369 4310 4390
2. 60:15:15 II 369 4430 4480
3. 75:15:15 I 369 4410 4430
4. 75:15:15 II 369 4490 4540
5. 90:15:15 I 369 4480 4550
6. 90:15:15 II 369 4550 4620
7. 105:15:15 I 369 4530 4600
8. 105:15:15 II 369 4630 4710
9. 120:15:15 I 369 4790 4890
10. 120:15:15 II 369 4890 5020

11.

4.5

60:15:15 I 369 4410 4510
12. 60:15:15 II 369 4500 4600
13. 75:15:15 I 369 4470 4570
14. 75:15:15 II 369 4510 4650
15. 90:15:15 I 369 4560 4630
16. 90:15:15 II 369 4610 4740
17. 105:15:15 I 369 4680 4810
18. 105:15:15 II 369 4810 4850
19. 120:15:15 I 369 4950 4990
20. 120:15:15 II 369 5000 5100

21.

5.0

60:15:15 I 369 4500 4570
22. 60:15:15 II 369 4570 4680
23. 75:15:15 I 369 4550 4610
24. 75:15:15 II 369 4610 4680
25. 90:15:15 I 369 4630 4720
26. 90:15:15 II 369 4700 4790
27. 105:15:15 I 369 4740 4910
28. 105:15:15 II 369 4810 4940
29. 120:15:15 I 369 4980 5030
30. 120:15:15 II 369 5100 5150

31.

4.0

60:15:15 I 355 4520 4550
32. 60:15:15 II 355 4670 4780
33. 75:15:15 I 355 4710 4680
34. 75:15:15 II 355 4750 4810
35. 90:15:15 I 355 4810 4860
36. 90:15:15 II 355 4900 4980
37. 105:15:15 I 355 4930 4910
38. 105:15:15 II 355 4950 5020
39. 120:15:15 I 355 4970 5050
40. 120:15:15 II 355 5000 5100

41.

4.5

60:15:15 I 355 4600 4670
42. 60:15:15 II 355 4690 4730
43. 75:15:15 I 355 4720 4810
44. 75:15:15 II 355 4810 4910
45. 90:15:15 I 355 4950 5010
46. 90:15:15 II 355 5050 5120
47. 105:15:15 I 355 5090 5180
48. 105:15:15 II 355 5120 5210
49. 120:15:15 I 355 5180 5240
50. 120:15:15 II 355 5290 5370
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Table A1. Cont.

#
Plant

Density,
mln/ha

Fertilizer,
N:P:K, kg/ha

Microfertilizers
Sum of Autumn

Effective
Temperatures

Irrigation

Fitohelp
(0.5 L/ha) +
Liposam
(0.2 L/ha)

Quantum-Grain
(1.0 L/ha) +
Liposam м
(0.2 L/ha)

600 m3/ha +
1000 m3/ha

700 m3/ha +
900 m3/ha

51.

5.0

60:15:15 I 355 4720 4790
52. 60:15:15 II 355 4850 4910
53. 75:15:15 I 355 4890 4930
54. 75:15:15 II 355 4910 4940
55. 90:15:15 I 355 4930 4990
56. 90:15:15 II 355 4990 5090
57. 105:15:15 I 355 5110 5210
58. 105:15:15 II 355 5160 5240
59. 120:15:15 I 355 5220 5280
60. 120:15:15 II 355 5360 5400

61.

4.0

60:15:15 I 345 4700 4730
62. 60:15:15 II 345 4830 4850
63. 75:15:15 I 345 4910 4940
64. 75:15:15 II 345 4930 4970
65. 90:15:15 I 345 4990 5020
66. 90:15:15 II 345 5150 5210
67. 105:15:15 I 345 5190 5240
68. 105:15:15 II 345 5210 5290
69. 120:15:15 I 345 5250 5320
70. 120:15:15 II 345 5380 5410

71.

4.5

60:15:15 I 345 4800 4840
72. 60:15:15 II 345 4950 4990
73. 75:15:15 I 345 5020 5100
74. 75:15:15 II 345 5080 5120
75. 90:15:15 I 345 5120 5150
76. 90:15:15 II 345 5280 5300
77. 105:15:15 I 345 5310 5390
78. 105:15:15 II 345 5330 5410
79. 120:15:15 I 345 5350 5470
80. 120:15:15 II 345 5410 5590

81.

5.0

60:15:15 I 345 4970 4990
82. 60:15:15 II 345 5050 5060
83. 75:15:15 I 345 5080 5180
84. 75:15:15 II 345 5210 5290
85. 90:15:15 I 345 5290 5330
86. 90:15:15 II 345 5450 5510
87. 105:15:15 I 345 5510 5570
88. 105:15:15 II 345 5570 5630
89. 120:15:15 I 345 5610 5680
90. 120:15:15 II 345 5750 5860
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Table A2. Yields, kg/ha (preceding crop—rapeseed).

#
Plant

Density,
mln/ha

Fertilizer,
N:P:K, kg/ha

Microfertilizers
Sum of Autumn

Effective
Temperatures

Irrigation

Fitohelp
(0.5 L/ha) +
Liposam
(0.2 L/ha)

Quantum-Grain
(1.0 L/ha) +
Liposam м
(0.2 L/ha)

600 m3/ha +
1000 m3/ha

700 m3/ha +
900 m3/ha

91.

4.0

60:15:15 I 369 4440 4480

92. 60:15:15 II 369 4530 4520

93. 75:15:15 I 369 4460 4500

94. 75:15:15 II 369 4520 4530

95. 90:15:15 I 369 4480 4510

96. 90:15:15 II 369 4640 4690

97. 105:15:15 I 369 4550 4620

98. 105:15:15 II 369 4720 4970

99. 120:15:15 I 369 4970 5080

100. 120:15:15 II 369 4990 5180

101.

4.5

60:15:15 I 369 4690 4720

102. 60:15:15 II 369 4750 4750

103. 75:15:15 I 369 4740 4780

104. 75:15:15 II 369 4820 4940

105. 90:15:15 I 369 4980 4990

106. 90:15:15 II 369 5120 5050

107. 105:15:15 I 369 5010 5030

108. 105:15:15 II 369 5040 5080

109. 120:15:15 I 369 4710 4800

110. 120:15:15 II 369 5090 5140

111.

5.0

60:15:15 I 369 4790 4850

112. 60:15:15 II 369 4840 4970

113. 75:15:15 I 369 4820 4870

114. 75:15:15 II 369 4860 5020

115. 90:15:15 I 369 5090 5090

116. 90:15:15 II 369 5210 5150

117. 105:15:15 I 369 5110 5140

118. 105:15:15 II 369 5230 5260

119. 120:15:15 I 369 4800 4990

120. 120:15:15 II 369 4990 5280
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Table A2. Cont.

#
Plant

Density,
mln/ha

Fertilizer,
N:P:K, kg/ha

Microfertilizers
Sum of Autumn

Effective
Temperatures

Irrigation

Fitohelp
(0.5 L/ha) +
Liposam
(0.2 L/ha)

Quantum-Grain
(1.0 L/ha) +
Liposam м
(0.2 L/ha)

600 m3/ha +
1000 m3/ha

700 m3/ha +
900 m3/ha

121.

4.0

60:15:15 I 355 4900 4950

122. 60:15:15 II 355 4990 5110

123. 75:15:15 I 355 4920 4970

124. 75:15:15 II 355 5060 5140

125. 90:15:15 I 355 5070 5100

126. 90:15:15 II 355 5190 5250

127. 105:15:15 I 355 5090 5140

128. 105:15:15 II 355 5220 5280

129. 120:15:15 I 355 5180 5200

130. 120:15:15 II 355 5290 5370

131.

4.5

60:15:15 I 355 5100 5150

132. 60:15:15 II 355 5150 5200

133. 75:15:15 I 355 5120 5170

134. 75:15:15 II 355 5190 5240

135. 90:15:15 I 355 5290 5390

136. 90:15:15 II 355 5410 5520

137. 105:15:15 I 355 5310 5420

138. 105:15:15 II 355 5570 5640

139. 120:15:15 I 355 5530 5610

140. 120:15:15 II 355 5640 5780

141.

5.0

60:15:15 I 355 5100 5090

142. 60:15:15 II 355 5120 5230

143. 75:15:15 I 355 5140 5160

144. 75:15:15 II 355 5200 5300

145. 90:15:15 I 355 5260 5300

146. 90:15:15 II 355 5410 5510

147. 105:15:15 I 355 5280 5330

148. 105:15:15 II 355 5440 5550

149. 120:15:15 I 355 5440 5530

150. 120:15:15 II 355 5610 5720
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Table A2. Cont.

#
Plant

Density,
mln/ha

Fertilizer,
N:P:K, kg/ha

Microfertilizers
Sum of Autumn

Effective
Temperatures

Irrigation

Fitohelp
(0.5 L/ha) +
Liposam
(0.2 L/ha)

Quantum-Grain
(1.0 L/ha) +
Liposam м
(0.2 L/ha)

600 m3/ha +
1000 m3/ha

700 m3/ha +
900 m3/ha

151.

4.0

60:15:15 I 345 5030 5050

152. 60:15:15 II 345 5080 5100

153. 75:15:15 I 345 5050 5070

154. 75:15:15 II 345 5110 5140

155. 90:15:15 I 345 5180 5250

156. 90:15:15 II 345 5240 5380

157. 105:15:15 I 345 5200 5270

158. 105:15:15 II 345 5290 5420

159. 120:15:15 I 345 5310 5400

160. 120:15:15 II 345 5400 5580

161.

4.5

60:15:15 I 345 5160 5180

162. 60:15:15 II 345 5180 5220

163. 75:15:15 I 345 5200 5230

164. 75:15:15 II 345 5240 5260

165. 90:15:15 I 345 5280 5370

166. 90:15:15 II 345 5320 5450

167. 105:15:15 I 345 5300 5410

168. 105:15:15 II 345 5340 5440

169. 120:15:15 I 345 5380 5490

170. 120:15:15 II 345 5410 5580

171.

5.0

60:15:15 I 345 4950 5000

172. 60:15:15 II 345 5110 5120

173. 75:15:15 I 345 5010 5030

174. 75:15:15 II 345 5130 5210

175. 90:15:15 I 345 5360 5450

176. 90:15:15 II 345 5460 5580

177. 105:15:15 I 345 5410 5510

178. 105:15:15 II 345 5490 5610

179. 120:15:15 I 345 5680 5730

180. 120:15:15 II 345 5910 6020
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