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SOLUTION OF THE PROBLEM OF FREE VIBRATIONS OF A NONTHIN  
ORTHOTROPIC SHALLOW SHELL OF VARIABLE THICKNESS IN  
THE REFINED STATEMENT  

O. Ya. Grigorenko,1 O. Yu. Parkhomenko,2 L. Ya. Vasil'eva,2  
and  М. Yu. Borisenko2 UDC 539.3 

We consider the problem of investigation of the spectrum of natural vibrations of a nonthin orthotropic 
shallow shell variable in two coordinate directions of thickness in the nonclassical statement.  The ap-
proach to the solution of the obtained two-dimensional boundary-value problem is based on its reduction 
(by the method of spline-approximation of the unknown functions along one coordinate direction) to the 
one-dimensional problem with its subsequent solution.  We study different cases of boundary conditions 
imposed on the contours of the shell.  We also perform the comparison and analysis of the natural fre-
quencies and modes of vibrations of orthotropic shells of constant and variable thickness.  

Introduction 

Shallow anisotropic shells are extensively used in various branches of contemporary engineering, aircraft 
building, shipbuilding, rocket production, etc.  In the industry and civil engineering, numerous structural com-
ponents have the form of shells with different geometric and physical parameters.  In the course of development 
and implementation of new technologies, the requirements to the strength parameters and the reliability of creat-
ed machines, mechanisms, and structures, including those with the shape of shells become more and more se-
vere.  Hence, it is necessary to develop the efficient numerical and experimental methods for the investigation 
objects of this kind with an aim to determine the parameters of their load-carrying ability and, in particular, the 
resonance frequencies of vibration of the shells. 

The scientific works devoted to the investigation of problems of this kind mainly use the classical theory 
based on the Kirchhoff–Love hypotheses [1–4, 6].  The fundamentals of the classical theory of shells can be 
found in [1, 11].  In the numerical analysis of some types of the shells, it is necessary to apply the refined ver-
sions of the theory connected with the use of certain additional parameters.  In particular, in the case of nonthin 
shells, it is reasonable to take into account transverse shears, which is done in the Timoshenko–Mindlin nonclas-
sical theory [12–14].  In fact, we can mention numerous monographs, where the reader can find the presentation 
of the fundamentals of the refined theory of shells.  The results of investigations of the stress-strain state of shal-
low shells in the nonclassical statement are presented in [8, 9].  The numerical analyses of the free vibrations of 
plates in the Timoshenko–Mindlin theory can be found in [5, 8, 13, 15]. 

In the present paper, we consider free vibrations of an orthotropic shallow cylindrical shell of rectangular 
shape (in plan) for different types of boundary conditions.  The thickness of the shell varies in both coordinate 
directions.  The analyses of frequencies are based on the use of spline approximation along one of coordinate 
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directions and subsequent solution of the boundary-value problem for eigenvalues for systems of ordinary dif-
ferential equations of high order with variable coefficients by the stable numerical method of discrete orthogo-
nalization in combination with the method of step-by-step search [7–10].  

The aim of investigations carried out in the present paper is to find the frequencies of free vibrations of elas-
tic rectangular shells whose thickness vary in both coordinate directions in the refined statement on the basis of 
the method of spline approximation and compare the values of frequencies obtained for different types of 
boundary conditions on the contours of the shell. 

Basic Relations 

Consider the problem of free vibrations of a shallow orthotropic shell of rectangular shape (in plan)  

 0 ≤ x ≤ a ,     0 ≤ y ≤ b ,     −h
2
≤ z ≤ h

2
, 

whose thickness  h(x, y)   varies in two coordinate directions.  The geometry of the shell (in plan) is approxi-
mately identified with the geometry of the middle surface of the shell and the principal curvatures satisfy the 
relation   

 k1 ⋅ k2 ≈ 0 . 

The reasoning is performed with the use of the Timoshenko–Mindlin hypothesis according to which an el-
ement normal to the coordinate surface prior to deformation preserves its length and remains rectilinear after 
deformation but is no longer perpendicular to the surface and rotates by a certain angle.  It is also taken into ac-
count that the normal stresses in the planes parallel to the coordinate surface are small as compared to the corre-
sponding stresses on the surfaces perpendicular to this coordinate surface [8]. 

According to the accepted hypothesis, we represent the displacements  ux ,  uy ,  and  uz   in the form 

 ux (x, v, z, t) = u(x, y, t) + zψ x (x, y, t) , 

 uy(x, v, z, t) = v(x, y, t) + zψ y(x, y, t) , (1) 

 uz (x, v, z, t) = w(x, y, t) , 

where  x ,  y ,  and  z   are the coordinates of points of the shell,  t   is time,  ux ,  uy ,  and  uz   are the corre-
sponding displacements;  u ,  v ,  w   are the displacements of points of the coordinate surface in the directions  
x ,  y ,  and  z ,  respectively, and  ψ x   and  ψ y   are the total angles of rotation of the rectilinear element. 

According to (1), we write expressions for the strains in the form  

 ex (x, y, z, t) = εx (x, y, t) + zχx (x, y, t) , 

 ey(x, y, z, t) = εy(x, y, t) + zχy(x, y, t) , 

 exy(x, y, z, t) = εxy(x, y, t) + z2χxy(x, y, t) , 
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 exz (x, y, z, t) ≅ γ x (x, y, t) , 

 eyz (x, y, z, t) ≅ γ y(x, y, t) . 

Here,  γ x   and  γ y   are the angles of rotation caused by transverse shears,  εx ,  εy ,  and  εxy   are the compo-
nents of tangential strains specifying the internal geometry of the coordinate surface, and  χx ,  χy ,  and  2χxy   
are the components of bending strains characterizing the processes of bending and torsion of the coordinate sur-
face. 

The equations used to describe free transverse vibrations of the shallow shells within the framework of the 
Timoshenko–Mindlin-type nonclassical theory take the form [8] 

 ∂Nx
∂x

+
∂Nyx

∂y
= 0 ,      

∂Nxy

∂x
+
∂Ny

∂y
= 0 , 

 ∂Qx
∂x

+
∂Qy

∂y
− k1Nx − k2Ny + ρhω2w = 0 , 

   (2) 

 ∂Mx
∂x

+
∂Myx

∂y
−Qx + ρ

h3

12
ω2ψ x = 0 , 

 
∂Mxy

∂x
+
∂My

∂y
−Qy + ρ

h3

12
ω2ψ y = 0 . 

In Eqs. (2), x  and y  are the rectangular Cartesian coordinates of the middle surface  0 ≤ x ≤ a ,  0 ≤ y ≤ b ,  
w   is a deflection, and  ρ   is the density of the material. 

The relations of elasticity are true for the normal  Nx , Ny   and shear  Nxy , Nyx   forces, bending  Mx , My   
and torque  Mxy ,  Myx   moments, and the lateral forces  Qx ,  Qy .  In the case of an orthotropic shell for which 
the axes of orthotropy coincide with coordinate axes, these relations can be represented as follows: 

 Nx = C11
∂u
∂x

+ k1w
⎛
⎝⎜

⎞
⎠⎟ + C12

∂v
∂y

+ k2w
⎛
⎝⎜

⎞
⎠⎟

, 

 Ny = C12
∂u
∂x

+ k1w
⎛
⎝⎜

⎞
⎠⎟ + C22

∂v
∂y

+ k2w
⎛
⎝⎜

⎞
⎠⎟

, 

 Nxy = C66
∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟
+ k2D66

∂ψ x
∂y

+
∂ψ y

∂x
⎛
⎝⎜

⎞
⎠⎟

, 

 Nyx = C66
∂u
∂y

+ ∂v
∂x

⎛
⎝⎜

⎞
⎠⎟
+ k1D66

∂ψ x
∂y

+
∂ψ y

∂x
⎛
⎝⎜

⎞
⎠⎟

, 
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 Mx = D11
∂ψ x
∂x

+ k12w
⎛
⎝⎜

⎞
⎠⎟ + D12

∂ψ y

∂y
+ k22w

⎛
⎝⎜

⎞
⎠⎟

, 

 My = D12
∂ψ x
∂x

+ k12w
⎛
⎝⎜

⎞
⎠⎟ + D22

∂ψ y

∂y
+ k22w

⎛
⎝⎜

⎞
⎠⎟

, 

 Mxy = Myx = D66
∂ψ x
∂y

+
∂ψ y

∂x
⎛
⎝⎜

⎞
⎠⎟

, 

 Qx = K1γ x = K1 ψ x +
∂w
∂x

− k1u
⎛
⎝⎜

⎞
⎠⎟ , 

 Qy = K2γ y = K2 ψ y +
∂w
∂y

− k2v
⎛
⎝⎜

⎞
⎠⎟

. 

We now determine the stiffness characteristics  Cij ,  Ki ,  and  Dij   by the following formulas: 

 C11 = Exh
1− νxνy

,      C12 = νyC11 ,      C22 =
Eyh

1− νxνy
,      C66 = Gxyh , 

 D11 = Exh3

12(1− νxνy )
,      D12 = νyD11 , 

   (3) 

 D22 =
Eyh3

12(1− νxνy )
,      D66 =

Gxyh3

12
, 

 K1 = 5
6
hGxz ,      K2 = 5

6
hGyz . 

In Eqs. (3),  Ex   and  Ey   are the moduli of elasticity,  Gxy , Gxz ,  and  Gyz   are the shear moduli,  and  νx   
and  νy   are Poisson’s ratios. 

On the contours of the shell   

 x = 0 ,   x = a       and      y = 0 ,   y = b ,   

we impose the boundary conditions represented in terms of displacements and angles of rotation. 
We represent expressions for the boundary conditions  and  x = const : 

 — in the case of a rigidly fixed contour 

 u = v = w = ψ x = ψ y = 0       for    x = 0 ,    x = a ; (4) 
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 — in the case of a hinged contour 

 ∂u
∂x

= v = w = ∂ψ x
∂x

= ψ y = 0       for    x = 0 ,    x = a ; (5) 

 — one contour is rigidly fixed and the other contour is hinged 

 u = v = w = ψ x = ψ y = 0       for    x = 0 , 
   (6) 

 ∂u
∂x

= v = w = ∂ψ x
∂x

= ψ y = 0       for    x = a . 

We can write similar boundary conditions on the contours  y = 0   and  y = b   by the change of variables 

 x → y ,     u → v ,      and     ψ x → ψ y   

in Eqs. (4)–(6). 
To solve the obtained two-dimensional boundary-value problem, we use an approach based on the approxi-

mation of desired functions in one coordinate direction with the help of spline functions and solve the one-
dimensional boundary-value problem thus obtained by the stable numerical method of discrete orthogonalization 
in combination with the method of step-by-step search [7–10]. 

Procedure of Solution  

We seek the solution of the system of equations (2) in the form 

 u(x, y) = ui (x)ϕ1, i (y)
i=0

N

∑ ,      v(x, y) = vi (x)ϕ2, i (y)
i=0

N

∑ , 

 w(x, y) = wi (x)ϕ3, i (y)
i=0

N

∑ , (7) 

 ψ x (x, y) = ψ xi (x)ϕ4, i (y)
i=0

N

∑ ,      ψ y(x, y) = ψ yi (x)ϕ5, i (y)
i=0

N

∑ , 

where   

 ui (x) ,    vi (x) ,    wi (x) ,    ψ xi (x) ,     and     ψ yi (x) ,     i = 0,…, N , 

are the desired functions,  ϕ j,i (y) ,   j = 1,…, 5 ,  are linear combinations of B -splines on the uniform mesh  Δ :  

 0 = y0 < y1 <… < yN = b , satisfying the boundary conditions on the contours  y = 0   and  y = b . 
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In the analyzed case, we restrict ourselves to the approximation by spline functions of the third degree: 

 B3
i (y) = 1

6

0, −∞ < y < yi−2,

z3, yi−2 ≤ y < yi−1,

−3z3 + 3z2 + 3z +1, yi−1 ≤ y < yi ,

3z3 − 6z2 + 4, yi ≤ y < yi+1,

(1− z)3, yi+1 ≤ y < yi+2,

0, yi+2 ≤ y < ∞,

⎧

⎨

⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

 

where   z = (y − yk )/hy   in the interval   [yk , yk+1] ,   k = i − 2,…, i +1 ,   i = −1,…, N +1 ,  hy  = yk+1 − yk  = const.   
In this case, we construct the functions  ϕ j,i (y)   as follows: 

 — if the corresponding resolving function is equal to zero, then 

 ϕ j,0 (y) = −4B3
−1(y) + B3

0(y) ,      ϕ j,1(y) = B3
−1(y) − 1

2
B3
0(y) + B3

1(y) , 

 ϕ j,i (y) = B3
i (y) ,     i = 2, 3,…, N − 2 ; 

 — if the derivative of the resolving function with respect to  y   is equal to zero, then 

 ϕ j,0 (y) = B3
0(y) ,      ϕ j,1(y) = B3

−1(y) − 1
2
B3
0(y) + B3

1(y) , 

 ϕ j,i (y) = B3
i (y) ,     i = 2, 3,…, N − 2 . 

We also have similar formulas for the functions  ϕ j,N−1(y)   and  ϕ j,N (y) . 
Substituting (7) in the system of equations (2), we require that Eqs. (2) hold at given collocation points  

 ξk ∈[0, b] ,  k  =  0,…, N .   In the case of the even number of nodes of the mesh  (N = 2n +1,  n ≥ 3)   and un-
der the condition that   ξ2i ∈[y2i , y2i+1] ,  ξ2i+1 ∈[y2i , y2i+1] ,  i = 0,…, n ,  on the segment  [y2i , y2i+1] , we get two 
collocation nodes, while on the neighboring segments  [y2i+1, y2i+2 ] , the collocation nodes are absent.  On each 
segment   [y2i , y2i+1] ,  we choose collocation points as  follows:   

 ξ2i = y2i + z1h ,      ξ2i+1 = y2i + z2h ,      i  = 0, … , n ,   

where  z1 ,  z2   are the roots of the second-order Legendre polynomial on the segment   [0,1] :  

 z1,2  = 
 

1
2
∓

3
6

.  
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This choice of collocation points is optimal and noticeably increases the order of accuracy of the approximation.  
After transformations, we obtain a system of  N +1   linear  differential equations for  ui ,  vi ,  wi ,  ψ xi ,  
and  ψ yi . 

The obtained system of ordinary differential equations can be reduced to the normal form as follows: 

 dY
dx

= A(x,ω)Y ,    0 ≤ x ≤ a , (8) 

where 

 
 
Y = u , ′u , v , ′v ,w, ′w ,ψ x , ′ψ x ,ψ y , ′ψ y⎡⎣ ⎤⎦

⊤  

  =  
  
u0,…, ′uN , v0,…, ′vN , w0,…, ′wN , ψ x0 ,…, ′ψ xN , ψ y0 ,…, ′ψ yN⎡⎣ ⎤⎦

⊤  

is the column vector of the desired functions and their derivatives of dimension  10(N +1)   and  A(x,ω)   is 
a square matrix of order  10(N + 1) × 10(N + 1) . 

In a similar way, we formulate the boundary conditions (4)–(6) for the system of equations (2) 

 B1Y (0) = 0 ,      B2Y (a) = 0 . (9) 

The problem of eigenvalues for the system of ordinary differential equations (8) with the boundary condi-
tions (9) was solved by the method of discrete orthogonalization in combination with the method of step-by-step 
search [8, 9]. 

Results of Investigation   

By using the proposed methods, we studied the spectrum of natural frequencies of vibrations of an ortho-
tropic shallow shell of thickness  h(x, y)   variable in two coordinate directions.  We consider a square (in plan) 
cylindrical shell with a = b = 0.5m  and a dimensionless radius of curvature   

 rx =
Rx
a

= 1.3  

such that  kx = 1.538 m–1,  and ky = 0 . 
The thickness of the shell varies according to the law 

 h(x, y) = h0 1+ α cos πx
a

⎛
⎝⎜

⎞
⎠⎟ 1+ β cos πy

b
⎛
⎝⎜

⎞
⎠⎟ , (10) 

where the parameters  α ≤ 0.5   and  β ≤ 0.5   vary with steps of  0.1   and  h0   is the thickness of the shell of 
constant thickness and equivalent mass  (we set  h0 = 0.04m). 
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The physical parameters of the material of the shell are as follows: 

 Ex = 3.68 ⋅1010 Pa,    Ey = 2.68 ⋅1010 Pa,    Gxy = 0.50 ⋅1010 Pa, 

 Gyz = 0.41 ⋅1010 Pa,    Gxz = 0.45 ⋅1010 Pa,    νx = 0.077 ,    νy = 0.105 ,    ρ = 1870  kg/m3. 

The posed problem was solved for five types of boundary conditions on the contours of the shell: 

 (1°°) hinged support of all sides of the shell (boundary conditions of the BC-1°°  type):  

 ∂u
∂x

= v = w = ∂ψ x
∂x

= ψ y = 0       for    x = 0 ,    x = a , 

 u = ∂v
∂y

= w = ψ x =
∂ψ y

∂y
= 0       for    y = 0 ,    y = b ; 

 (2°°) rigid fixing along the entire contour (BC-2°°): 

 u = v = w = ψ x = ψ y = 0       for    x = 0 ,    x = a , 

 u = v = w = ψ x = ψ y = 0       for    y = 0 ,    y = b ; 

 (3°°) rigid fixing of three sides and hinged support of the fourth side (BC-3°°): 

 u = v = w = ψ x = ψ y = 0       for    x = 0 ,    x = a ,    y = 0 , 

 u = ∂v
∂y

= w = ψ x =
∂ψ y

∂y
= 0       for    y = b ; 

 (4°°) rigid fixing of two opposite sides and hinged support of the other two sides (BC-4°°): 

 u = v = w = ψ x = ψ y = 0       for    x = 0 ,    x = a , 

 u = ∂v
∂y

= w = ψ x =
∂ψ y

∂y
= 0       for    y = 0 ,    y = b ; 

 (5°°) rigid fixing of two adjacent sides and hinged support of the other two sides (BC-5°°): 

 u = v = w = ψ x = ψ y = 0       for    x = 0 ,    y = 0 , 
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Table 1 

 
 ω i = ω ia2 ρh/D11   

i  І ІІ Π , % 

1 18.0714 18.0723 0.01 

2 39.1647 39.1656 0.00 

3 40.3978 40.4562 0.14 

4 55.0759 55.1162 0.07 

 ∂u
∂x

= v = w = ∂ψ x
∂x

= ψ y = 0       for    x = a , 

 u = ∂v
∂y

= w = ψ x =
∂ψ y

∂y
= 0       for    y = b . 

The accuracy of evaluation of the frequencies of the free vibrations in the investigated shell by the spline-
collocation method was checked by comparing the obtained results with the corresponding values of frequencies 
computed analytically by expanding unknown functions in double Fourier series by the formulas 

 
 
u = amn cos

mπx
a

sin nπy
bn=1,3,…

∞

∑
m=1,3,…

∞

∑ , 

 
 
v = bmn sin

mπx
a

cos nπy
bn=1,3,…

∞

∑
m=1,3,…

∞

∑ , 

 
 
w = cmn sin

mπx
a

sin nπy
bn=1,3,…

∞

∑
m=1,3,…

∞

∑ , (11) 

 
 
ψ x = dmn cos

mπx
a

sin nπy
bn=1,3,…

∞

∑
m=1,3,…

∞

∑ , 

 
 
ψ y = emn sin

mπx
a

cos nπy
bn=1,3,…

∞

∑
m=1,3,…

∞

∑ . 

In Table 1, we present the values of the first four dimensionless frequencies of vibrations  ω i   of the shell 
of constant thickness  h(x, y)( = h0 ,  α = 0 ,  β = 0 ) .  Thus,  in  column  І,  we  give  the  frequencies  analytically  
computed by using relation (11).  The corresponding frequencies obtained as a result of calculations according to  
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Table 2 

 
 ω i = ω ia2 ρh/D11   (for  α = −0.4 ,  β = − 0.4 ,  and  BC-2°°) 

N 
i  

8 10 12 14 16 18 20 22 

1 37.8216 37.6029 37.5358 37.5052 37.4896 37.4775 37.4736 37.4707 

2 50.1194 49.6381 49.4826 49.4184 49.3815 49.3601 49.3460 49.3378 

3 57.2793 55.1016 54.4211 54.1509 54.0187 53.9438 53.8996 53.8728 

4 70.5151 68.6243 67.9049 67.6240 67.4874 67.4081 67.3610 67.3304 

Table 3 

 
  ω i = ω ia2 ρh/D11   (for  α = −0.4 ,  β = 0.4 ,  and  BC-5°°) 

N 
i  

8 10 12 14 16 18 20 22 

1 24.2309 24.0705 24.0156 23.9884 23.9738 23.9660 23.9607 23.9573 

2 41.9581 41.3797 41.0915 40.9476 40.8703 40.8241 40.7954 40.7775 

3 45.8808 44.6802 44.2145 44.0298 43.9408 43.8947 43.8660 43.8490 

4 61.4790 60.6186 60.0164 59.7364 59.5949 59.5157 59.4676 59.4370 

the spline-approximation method in the case of hinged fixing of all contours of the shell  (BC-1°°)  for the num-
ber of collocation  points  N = 18   are presented in column  ІІ  and  Π   is the difference expressed in terms of 
percent.  As we can see, the difference between the frequencies does not exceed  0.2 %,  which means that the 
accuracy and reliability of the method proposed for the evaluation of the free frequencies of vibrations of the 
shells are quite high.  

We studied the dependence of the values of frequencies  ω i   computed by the proposed spline-collocation 
method on the number of collocation  points  N .  The results of investigations are presented in Tables 2 and 3.  
The number of collocation points changes from  N = 8   to  N = 22   with steps equal to  2.   

In Table 2, we present the first four dimensionless frequencies of vibrations of a shell of variable thickness 
for  α = −0.4 ,  β = −0.4 ,  and the BC-2°°-type boundary conditions on the contours of the shell and for  
α = 0.4 ,  β = 0.4 .  In Table 3, we give the corresponding data for the  BC-5°°-type boundary conditions.  

As follows from Tables 2 and 3, the frequencies of vibrations strongly depend on the number of collocation 
points for small values of  N  any any character of changes in the thickness of the shell and any boundary condi-
tions on the edges.  As the number of collocation points increases, the frequencies decrease but the accuracy of 
calculations increases.  Even for  N = 16 ,  in most cases, it is possible to get a satisfactory accuracy of the re-
sults.  In our investigation, all calculations were carried out for  N = 18 . 
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Fig. 2 

 

Fig. 3 
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Fig. 4 

 

Fig. 5 

 

Fig. 6 
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Fig. 7 

 

Fig. 8 

 

Fig. 9 
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Fig. 10 

In Figs. 1–10, we show the plots of dependences of the dimensionless frequencies of free vibrations  ω i   of 
an orthotropic shell whose thickness varies in both coordinate directions on the parameters  α   and  β :  the first 
two frequencies of vibrations on the contours of the shell can be found in Figs. 1 and 2, under the BC-1°°-type 
boundary conditions, in Figs. 3 and 4, under the BC-2°°-type boundary conditions, in Figs. 5 and 6, under the 
BC-3°°-type boundary conditions, in Figs. 7 and 8, under the BC-4°°-type boundary conditions, and in Figs. 9 
and 10, under the BC-5°°-type boundary conditions. 

The analysis of the plots in Figs. 1–10 enables us to make the following conclusions:  

 — for all types of boundary conditions, the dependences of the frequencies of vibrations of shallow or-
thotropic cylindrical shells on the parameters  α   and  β   are similar; 

 — for a given value of the parameter  α = const ,  the frequencies of vibrations of the shells with any 
value of the parameter  β   equal in the absolute value and opposite in the sign are almost equal for all 
considered types of boundary conditions; 

 — similarly, under the same boundary conditions, in the cases where the parameter  β = const ,  the fre-
quencies of free vibrations are almost equal for the values of the parameter  α   equal in the absolute 
value but with opposite signs; 

 — for all analyzed types of boundary conditions, the frequencies of free vibrations of the cylindrical 
shells form three-dimensional surfaces resembling a paraboloid symmetric about the coordinate planes  
α = 0   and  β = 0 ; 

 — the values of the frequencies of free vibrations of cylindrical orthotropic shells with constant thickness  
(α = 0   and  β = 0 )  are always higher than the corresponding frequencies for shells whose thickness 
varies according to law (10) for any type of boundary conditions; 

 — the resonance frequencies of vibrations of the orthotropic shallow shells whose thickness varies in 
both coordinate directions according to law (10) increase as the absolute value of the parameter  α   
decreases  (for constant  β )  or as the absolute value of the parameter  β   decreases (for constant  α ). 
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Fig. 11 

This means that, for any type of boundary conditions imposed on the contours, the frequencies and modes 
of free vibrations of orthotropic cylindrical shallow shells can be varied within fairly broad ranges by the proper 
choice of the values of the parameters of thickness  α   and  β .  

In Fig. 11, we show the modes of free vibrations of shallow orthotropic cylindrical shells whose thickness 
varies in two coordinate directions in the case of rigid fixing of the shells along the contour (BC-1°°-type bound-
ary conditions) for  α = 0.3   and  β = −0.2 . 

The effect of symmetry of the modes of free vibrations of the investigated shells about the planes   x = a/2 ,  

 y = b/2 ,  and  z = 0   can be observed.  However, it is noticeable for the values of α  with large absolute values.  
The symmetry of the modes of free vibrations is also observed for given  α = const   and different  β .  The cen-
ters of the amplitudes of vibrations are shifted in the direction of lower stiffness.  

For  α   and  β   with equal absolute values but opposite signs, the first modes are symmetric about the 
plane of the planform, while the higher modes are symmetric about planes passing through the diagonals of the 
planform of the shells.  

In the present work, we develop an efficient numerical method based on the reduction of the system of par-
tial differential equation with variable coefficients corresponding to the mathematical model of the mechanics  
of free vibrations of anisotropic shallow thick-walled shells whose thickness varies in two coordinate directions 
within the framework of the refined Timoshenko–Mindlin theory to a system of ordinary differential equations 
of high order.  To solve the obtained system, we use the method of discrete orthogonalization together with the 
method of step-by-step search.  On the basis of the developed approach, we investigate free vibrations of a shal-
low orthotropic shell whose thickness varies in two coordinate directions.  The analysis of the influence of the 
character of changes in the thickness of the shell on the distribution of its dynamic characteristics is also per-
formed. 
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