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Abstract. The article presents solutions to flat contact problems applied to 
straight-tooth bevel gears, considering both linear and nonlinear 

dependencies between elastic displacements of the teeth and the resulting 
stresses. Maximum contact stresses and contact patch dimensions are 
determined, accounting for both linear and nonlinear relationships between 
elastic deformations of the teeth and stresses. These solutions are based on 
a novel contact strength theory. It is demonstrated that the load capacity of 
bevel gears, considering contact stresses and nonlinear dependencies 
between elastic deformations and stresses, increases by 1.113 times. 

1 Introduction 

The role of gear transmissions is exceptionally significant in modern gearbox manufacturing. 

Currently, the calculation of straight-tooth bevel gears with a flat linear contact system of 

involute teeth is carried out using the well-known Hertz formula. In this formula, angles δ1 

and δ2 of the generating (initial) cones of the pinion and gear are introduced, with 

δ1 + δ2 = δ = 90 degrees for orthogonal transmissions. Attempts to solve contact problems 

related to such straight-tooth bevel gears have been made by various researchers at different 

times. However, these attempts have not yielded the desired results. 

Analysis of recent research on this issue is most comprehensively presented in [1, 2]. 

Solutions to contact problems are based, as mentioned earlier, on the new theory of contact 

strength of elastically compressed bodies. As for bevel gears, recent developments in this 
field are also described in patents [3-7]. 

The aim of this study is to develop practical methods for calculating the contact strength 

of bevel gears, considering linear and point contact between tooth deformations and the 

resulting stresses. 
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2 Materials and methods 

In writing this paper, the authors used an analytical method, with the help of which the studied 

problems were considered in their unity and development. Taking into account the goals and 

objectives of the study, the structural and functional method of scientific research was used. 

The theoretical research was based on the fundamental principles of tribology in general and 

shipbuilding, utilizing theoretical mechanics approaches, machine components, and 

principles of design. 

3 Results 

In books [1, 2], it is demonstrated that when calculating the contact strength of bevel gears, 
it is advisable to consider transforming the tooth profiles into equivalent straight teeth. As a 

result, the calculation of the bevel gear engagement can be simplified to the calculation of 

the equivalent spur gear engagement between the wheels. 

In this case, the parameters of the equivalent bevel gears for the pinion dv1 and the wheel dv2 

(Figure 1), as well as the numbers of teeth zv1 and zv2 are determined based on well-known 

relationships [1, 2]: 

 

dv1 = d1/cos1;       dv2 = d2/cos2; 

zv1 = z1/cos1;        zv2 = z2/cos2. 

 

where d1, d2 are the mean pitch diameters of the pinion and the wheel, z1, z2 are the 

numbers of teeth of the pinion and the wheel; δ1, δ2 are the angles of the generating (initial) 

cones of the pinion and the wheel, and δ1 + δ2 = δ = 90 degrees. 

 
Fig.1. Parameters of bevel gears and forces in engagement: 1 - bevel pinion; 2 - bevel wheel 

The calculation model for contact in the considered case is represented by the contact 

model of two elastically compressed cylinders characterized by radii ρ1 and ρ2, which have 

the following form: 
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In accordance with the expressions for ρ1 and ρ2, the reduced radius of curvature ρw during 

external linear contact of the cylinders without considering the applied load will have the 

following form: 
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where u = d2/d1 = z2/z1 – is the gear ratio; 
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Taking into account the expressions for cosδ1 and cosδ2 mentioned above, the 

aforementioned relationship for determining the reduced radius of curvature ρw can be 

presented in its final form as follows: 
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First, let's solve the considered problem without taking into account the nonlinearity 

between elastic deformations and stresses. In this case, as the fundamental relationship 

establishing the correlation between elastic displacements (deformations) W of the bodies 

and the stresses σ arising in these bodies, we will adopt the expression [1-3]: 

 

W = Cmσn,                                                            (2) 

 

where Cm is the dimensional parameter in mm/MPa, n = 0.7…0.8 is the power-law 

exponent characterizing the nonlinearity between elastic displacements of the bodies and the 

stresses arising in these bodies. In this specific problem, it is assumed to be equal to one, i.e., 

n = 1. 
Let's express the average contact stresses σm, arising during the interaction of two 

elastically compressed cylinders as: 
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where b0 is the half-width of the contact patch; bw is the length of the cylinder or the width 

of the gear face; Fn is the normal force acting on the elastically compressed bodies. 

Let's represent the expression for the total amount of contact deformations (2) of the 

elastically compressed cylinders 1 and 2 in the following form: 
 

W = W1 + W2 = Cm1σ1 + Cm2σ2,                                     (4) 
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where W1, W2 are the elastic deformations of the first and second cylinders; Cm1, Cm2 are 

the dimensional parameters of the respective cylinders; σ1, σ2 are the contact stresses of the 

cylinders. 

Expressions for contact stresses on each of the contacting surfaces of the bodies, in 

accordance with Hooke's law, will take the form: 
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where v1, v2 are the Poisson's ratios; E1, E2 are the young's moduli of the materials of the 

cylinders; ε = ΔL/L is the relative deformation; ΔL is the absolute value of the elastic 

deformation of the cylinders; ΔL1, ΔL2 are the deformations of the first and second cylinders, 

respectively. 

The expression (4), based on equations (5), can be written as two equations, each applying 

to one of the cylinders: 
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Based on the equality between elastic displacements W and the absolute value of 

deformation ΔL, i.e., W = ΔL, let's find expressions for the dimensional parameters from 

equations (6), namely: 
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Based on the last two expressions and formula (3), let's determine the relationships for 

the contact compliance of each of the mating cylinders (teeth): 
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By multiplying the right sides of expressions (7) by the width of the contact patch 2b0, 

let's determine the coefficients of the beds of the mating bodies: 
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Taking into account the last two equations, the total coefficient of the bed of elastically 

compressed cylinders will take the form: 
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Based on equation (8) for L = 2b0, in which the bed coefficient does not depend on the 

variable x, the second function of contact deformations W(x) will take the form: 
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where ω(х) is the load function distributed along the x-axis within the width of the contact 

patch, N/mm.  

Multiplying the right sides of equation (9) and the dependency [2, 3], 
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мultiplying by dx, we obtain the expression: 
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which can be represented as: 
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The integral on the left side of equation (10) is equal to the compressive force Fn, i.e., 
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As a result of integrating the right side of equation (10), we can write the equality: 
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from which, we obtain: 
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The expression for maximum contact stresses found from the equation 
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at х = 0, taking into account dependencies (8) and (11), will take the form: 
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If we assume in equations (11) and (12) that v1 = v2 = v and E1 = E2 = E, based on 
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Then this equation transforms into the form: 
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If the angles of the generating cones δ1 and δ2 of the bevel gears are introduced into 

equations (13) and (14), then these equations will take the form: 
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The derived equations (13) – (16) for finding the half-width of the contact patch b0 and 

maximum contact stresses σH in the context of straight-tooth traditional bevel gears are 

presented for the first time, and they have no analogs in modern practices of calculating such 

transmissions. 

Now, let's move on to solving this problem, taking into account the nonlinear relationship 

between elastic and contact stresses, based on the dependency (2). In this case, the exponent 
of nonlinearity, n, according to experimental data [1, 2], will be considered as 0,7, i.e., 

n = 0,7. Additionally, let's assume 
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supposing m = ms. 

In order for the deformation W in formula (2) to have the form W = Cmσn and be expressed 

in mm, it is necessary for Cm to have the dimensionality of mm/MPa0,7. 
Based on the dependency 
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Applying it to each of the two elastically compressed bodies, let's find the expressions for 

contact stresses: 
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Combining the last two expressions with equation (2), let's represent the previously 
mentioned deformation equations W in the form of two equations, namely: 
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Then, by multiplying and dividing the right sides of expressions (17) by L0,3, assuming 

L = 2b0, L0,3 = (b0
2/2w)0,3 and W = L, let's find expressions for the dimensional 

parameters: 
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Based on equation (18) and the formula for determining the average contact stresses 
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let's find the dependencies of the contact compliance of the elastically compressed bodies 

based on equation (18), considering that the dimension of к1 and к2 is expressed in mm/N. 

In this regard, we can write: 
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Based on the derived expressions (19), let's write the equation for the bed coefficient A in 

the form: 
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After substituting the equation (20) into the expression W(x) = A(x)ω(х), assuming 

A(x) = А and using the function 
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let's represent the dependency 
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from which we obtain: 
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By raising both sides of the last equation to the power of 5/7, let's find the dependency of 

the half-width of the contact patch, namely: 
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Based on dependencies (20) and (21) and the equation [2] σH = b0
2/(2wbwA), let's 

express the maximum contact stresses in the following form: 
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4 Discussion 

In the obtained equations (21) and (22), it is not possible to assess the influence of Poisson's 

ratios and the moduli of elasticity of materials on the half-width of the contact patch b0 and 

the maximum contact stresses σН explicitly. However, from equations (21) and (22), it 

follows that for n = 0,7, the exponents of the Poisson's ratios and the moduli of elasticity are 

different from those when n = 1 и v1 ≠ v2, Е1 ≠ Е2, except for the parameters w, bw and Fn, 

which in all cases are characterized by exponents equal to 1/2. 

In transmissions, as is known, steels are used as materials for manufacturing gears with 

v1 = v2 and Е1 = Е2. In connection with this, assuming v1 = v2 = v = 0,3 and Е1 = Е2, let's 

transform the dependencies (21) and (22) into a more simplified form: 
 

1

sin
135,1

2

1
0






uEb

umzF
b

w

wn ;                                      (23) 
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ww

n
H

umzb

uEF






sin

1
56,0

1

2

.                                     (24) 

 

Equations (23) and (24), like the previously derived equations (15) and (16), are found 

taking into account that the reduced radius of curvature has the form: 

 

12

sin

2

1






u

umz w
w

. 

 

On the other hand, as can be inferred from the previously provided data, the mentioned 

radius of curvature can be expressed through the angles of the generating (initial) cones 1 

and 2 as: 

 

)coscos(2

sin

21

1






u

umz w
w

. 

 

In accordance with the given expression for the radius w, the expressions (21) and (22) 

for v1 = v2 = v = 0,3 and Е1 = Е2 = Е take the form: 

 

)coscos(

sin
135,1

21

1
0






uEb

umzF
b

w

wn ;                                (25) 

ww

n
H

umzb

uEF






sin

)coscos(
56,0

1

21 .                             (26) 

 

Comparing the numerical coefficients for b0 and σН in formulas (15), (16) and (25), (26), 

considering the nonlinearity between elastic deformations and stresses, the half-width of the 
contact patch b0 increases by a factor of 1,135/1,076 = 1,055, and the maximum contact 

stresses σH consequently decrease by a factor of 0,591/0,56 = 1,055. 

The reduction in contact stresses by a factor of 1,055 is equivalent, as known, to an 

increase in load-carrying capacity by this stress factor squared, i.e., approximately by 11.3%. 

5 Conclusions 

1. For the first time, solutions to flat contact problems have been developed for straight-

toothed bevel gears, determining maximum contact stresses and contact patch sizes, 

considering linear and nonlinear dependencies between elastic deformations and stresses. 
2. It is shown that in the case of nonlinear dependence between elastic deformations and 

stresses, maximum contact stresses decrease by a factor of 1,055, which corresponds to an 

increase in load-carrying capacity by a factor of 1,113 compared to linear dependence 

between these deformations and stresses. 
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