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Abstract. The solution to the flat contact problem is presented in relation 
to marine helical gear transmissions, considering the nonlinear relationship 
between elastic deformations of the teeth and stresses. Maximum contact 
stresses and contact patch sizes are determined, taking into account the 
nonlinearity between tooth deformations and stresses. 

1 Introduction 

The role of gear transmissions is exceptionally significant in modern gearbox engineering. 

Currently, the calculation of helical gear transmissions is carried out using the well-known 

Hertz formula, taking into account the linear relationship between deformations and stresses. 

Attempts to solve contact problems for helical gear transmissions with consideration of 

nonlinearity have not been undertaken or published in open sources, which is why the 

proposed solution to this problem is presented for the first time. The most comprehensive 
research on this issue is outlined in [1, 2].  

Contact problem solutions are based on a new theory of contact strength for elastically 

compressed bodies. As for helical gear transmissions, new developments on them are 

presented [3-8].  

The aim of this work is to develop a practical calculation method for helical marine gear 

transmissions regarding contact strength, considering the nonlinear relationship between 

elastic deformations and stresses in interacting helical teeth. 

2 Materials and methods 

The foundation of the work is based on a new theory of contact strength for elastically 

compressed bodies. In addition, in writing this paper, the authors used an analytical method, 

with the help of which the studied problems were considered in their unity and development. 

Taking into account the goals and objectives of the study, the structural and functional 

method of scientific research was used. The theoretical research was based on the 
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fundamental principles of tribology in general and shipbuilding, utilizing theoretical 

mechanics approaches, machine components, and principles of design. 

3 Results 

In the work [3], it was first demonstrated that there is a nonlinear relationship between the 

deformations of elastically compressed bodies and the resulting stresses. The nonlinearity 

exponent, denoted as n, characterizing this nonlinearity, falls within the range of 0,7 – 0,8, 

specifically n = 0,7 – 0,8. In practical calculations for materials such as steel, it is necessary 

to consider a nonlinearity exponent of n = 0,7, as confirmed by experimental research data 

[1, 2].  
Based on the above, we can formulate the expression for the contact deformations 

function. 

 
W(x) = A(x)wn(x),     (1) 

 

where A(x) is a dimensionless parameter, inversely proportional to the stiffness coefficient, 

referred to as the bedding coefficient, measured in mm²/N, and dependent on the magnitude 
of x; w(x) is the specific load per unit width of the contact patch (load distribution function 

along the x-axis). 

In its general form, expression (1) will look as follows [1, 2]: 

 






































 


0

0

0

0

2

0

0

7,02
)()()1(

)()(

b

b

n

H

n

n
n

b

b

n xdxxb
F

xL

E

xL
dxxwxА

,  (2) 

 

where σH – maximum contact stresses at the pitch point of involute teeth, MPa; ΔL(x) – 

magnitude of contact deformation, mm; v – Poisson's ratio, equal to 0,3 for steel; Fn – normal 

force acting on the mating pair of teeth, N. 

Based on equation (2), it can be inferred that an explicit solution is not feasible. Therefore, 

let's proceed to solving the flat contact problem with a nonlinearity exponent of n = 0,7. For 

this purpose, the main relationship between deformations and contact stresses will be 

represented as: 
 

W = Cmσn = Cmσ0,75.    (3) 

 

The dependency (3) is developed based on the Winkler hypothesis and further refined by 

A.P. Popov [1, 2]. In order for the deformation W in expression (3) to be in mm, it is 

necessary to convert the dimension of the parameter Cm to the form of mm/MPa0,7 or in 

mm2,4/N0,7. 

In relation to each of the two elastically compressed bodies, based on the well-known 

expression for contact stresses σ = εE/(1 – v2) = EΔL/((1 – v2)L), let's represent the 
expressions for contact stresses in the following form: 
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Based on equations (3) and (4), let's express the dependency of contact deformations W 

in the form of two equations:" 
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By multiplying and dividing the right sides of equations (5) by ΔL0,3, and considering 

L = 2b0, ΔL0,3 = (b0
2/2ρw)0,3 and W = ΔL, ρw = dw1usinαw/2cos2β(u±1), let's express the 

dimensional parameters 
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Utilizing equations (6) and the formula for average contact stresses σm = Fn/2b0bw, let's 

determine the dependencies of contact compliance for each of the mating teeth, considering 

that the dimension of δк1 and δк2 is expressed in mm/N: 
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Based on expressions (7), let's represent the dependency of the bedding coefficient in the 

following form: 
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As a result of substituting equation (8) into the expression W(x) = A(x)w(x), assuming 

A(x) = А and utilizing the function 
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we can express the dependency by writing 
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from which we obtain 
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Raising both sides of equation (9) to the power of 5/7, we find the expression for the half-

width of the contact patch. 
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Utilizing expressions (9) and (10), which are part of the given formula σН = b0
2/2ρwАbw, 

let's write the expression for maximum contact stresses. 
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In the provided equations (10) and (11), it is extremely challenging to assess the influence 

of the parameters on the half-width of the contact patch b0 and the maximum contact stresses 

σН explicitly. 

However, equations (10) and (11) indicate that with n = 0,7, the power exponents of the 

Poisson's ratios and elastic moduli of materials differ from those obtained with n = 1 and 

v1 ≠ v2, Е1 ≠ Е2, except for the parameters ρw, bw and Fn, which in all cases are characterized 

by power exponents equal to 1/2. 

In gear transmissions, as is well known, steels are commonly used as materials for 

manufacturing gears with identical values of Poisson's ratios and elastic moduli. Accordingly, 

assuming v1 = v2 = v = 0,3 and Е1 = Е2 = Е, let's present the dependencies (10) and (11) in a 

simplified form, more convenient for practical use, namely: 
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The dependency for determining contact stresses with v1 = v2 = v = 0,3 and Е1 = Е2 = Е 

in helical gears is as follows: 
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Comparing the numerical coefficients for σН in expressions (13) and (14), it is observed 

that considering nonlinearity between deformations and stresses results in a reduction of the 

maximum contact stresses σН by a factor of 0,592/0,56 = 1,057. 
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In this regard, the load-carrying capacity of the mesh in terms of contact stresses increases 

due to the mentioned nonlinearity by a factor of 1,0572 = 1,114, approximately by 11%. 

4 Discussion 

To assess the reliability of the obtained solutions for nonlinear flat and spatial contact 

problems and to choose the nonlinearity exponent, a simple device was created (Fig. 1) with 

the aim of obtaining dimensions of the narrow rectangular contact strip and deformations. As 

for the elliptical contact patch, sufficient information on this is detailed in [2, 3]. Now, let's 

focus only on the rectangular contact patch, based on Fig. 1. 

 

 

Fig. 1. Device for loading cylinders. 

The device (Fig. 1) consists of a massive flat plate 1 and vertically rigidly connected 

columns 2 and 3. For loading elastically contacting bodies, a loader 4 is used. Elastic 

compressed bodies include a cylinder 5 with shanks 6 and a barrel-shaped cylinder 7 with 

shanks 8. 

Vertical columns 2 and 3 have slots along their entire height where the shanks 6 of 

cylinder 5 and shanks 8 of barrel-shaped cylinder 7 are placed. The cross-sections of the 

shanks 6 and 8 are rectangular and correspond to the guiding slots in columns 2 and 3. 

Shanks 6 and 8 serve not only for mounting cylinder 5 and barrel-shaped cylinder 7 but 

also for aligning cylinder 5 relative to plate 1 and barrel-shaped cylinder 7 relative to 

cylinder 5. 

Loading of the cylinders is carried out by pressing them together due to the action of 

element 4. The maximum radius r1 of the barrel-shaped cylinder at the initial contact point 
is 40 mm, while the radius of the circular cylinder is 60 mm, i.e., r2 = 60 mm. The length of 

these cylinders is bw = 100 mm, and the curvature parameter ΔS of the barrel-shaped cylinder 

in the end sections is assumed to be ΔS = 0,03 mm. 

The surface of the flat plate 1, as well as the surfaces of cylinders 5 and 7, are carefully 

fitted to each other and characterized by roughness not exceeding 0,8-1 µm. The installation 

and assembly of cylinders relative to each other and the flat plate are monitored during 

experiments using well-known measuring and control means both before and after loading, 

and if necessary, during loading. 
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The loading of the cylinders in all cases during the experiments was performed vertically 

applied forces Fn, equal to (0,5; 1,0; 1,5; 2,0; 2,5; 3,0)∙104 N. To obtain the contact spot 

dimensions, Berlin blue and surik were used, with the layer thickness varying within 3-5 µm. 

Considering the small dimensions of the contact strip width (flat problem), during the 

experiments, photographs of the specified areas were taken with a sixtyfold magnification. 

However, as the experiments showed, the necessity for photographing the contact patch 

length, equal to bw, i.e., the length of the cylinders, practically diminished. 

During the experiments, each loading was repeated from two to three times. For two 

measurements, the same loading condition was repeated up to five times. The increase in the 

number of measurement repetitions for each loading condition was justified by several 

reasons. The main reasons included the violation of conditions for the correct alignment of 
the cylinder relative to the plate and the cylinders relative to each other, as well as the 

'smearing' of the contact spot and, in some cases, errors associated with the increased size of 

the photographed contact spots. 

To determine the width of the contact patch 2b0, we used the relationship obtained for 

two elastically compressed circular cylinders or a circular cylinder with a plane, taking into 

account nonlinearity between deformations and stresses [1, 2], which is formulated as: 

 

Eb

Fr

Eb

Fr
b

w

n

w

n 11
0 208,3604,122 

.     (15) 

 

The force values Fn = (0,5 - 3,0)·104 N, r1 = 60 mm, and bw = 100 mm were mentioned 

earlier. The elastic modulus of the materials Е1 = Е2 = Е = 2,1·105 MPa. Calculated and 

measured values of the contact patch width 2b0 are presented in Table 1. 

Table 1. Calculated and measured values of the width of the rectangular contact patch, characteristic 
for two elastically compressed circular cylinders or a cylinder with a plane. 

Measurable quantities 
Force magnitude Fn∙10–4, Н 

0,5 1,0 1,5 2,0 2,5 3,0 

Calculation 
2b0, mm 

0,384 0,541 0,664 0,763 0,856 0,939 

Experiment 0,395 0,550 0,650 0,770 0,860 0,950 

2b0(exp)/2b0(calculation) 1,0286 1,0166 0,9790 1,0092 1,0047 1,0117 

 
From Table 1, it is evident that the difference between experimental and calculated values 

of the contact patch width 2b0 ranges from 1,0047 to 1,0286 times, fluctuating within the 

range of 0,47% to 2,86%. 

In one case, with Fn = 1,5∙104 N, the coefficient is 0,979, as a result of which the 

experimental value of the contact patch width was less than the calculated value by a factor 

of 1,0214, indicating a difference between these values within the range of up to 2,14%. 

5 Conclusions 

1. Solutions to the contact problem have been developed for helical gear transmissions, 

taking into account the nonlinear relationship between stresses and deformations. It is 

recommended to consider a nonlinearity factor of n = 0,7 when solving contact problems. 
2. It has been demonstrated that the load-carrying capacity of the helical mesh increases 

by approximately 11% due to the mentioned nonlinearity under the applied force 

Fn = 3·104 N. 
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