МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ МИКОЛАЇВСЬКИЙ НАЦІОНАЛЬНИЙ АГРАРНИЙ УНІВЕРСИТЕТ

Факультет технології виробництва і переробки продукції тваринництва, стандартизації та біотехнології

Кафедра біотехнології та біоінженерії

Генетичні ресурси сільськогосподарських тварин

Методичні рекомендації для практичних робіт для здобувачів першого (бакалаврського) рівня вищої освіти ОПП «Біотехнології та біоінженерія» спеціальності 162 «Біотехнології та біоінженерія» денної форми здобуття вищої освіти

Миколаїв 2024

УДК 636.082:575 Г34

Друкується за рішенням науково-методичної комісії факультету технології виробництва і переробки продукції тваринництва, стандартизації та біотехнології Миколаївського національного аграрного університету від «20» листопада 2024 р., протокол № 3.

Укладачі:

О.С. Крамаренко - канд. с.-г. наук, доцент кафедри біотехнології та біоінженерії, Миколаївський національний аграрний університет.

Рецензенти:

– д-р сг. наук, старший науковий співробітник,
професор кафедри технології виробництва
продукції тваринництва, Подільський державний
аграрний університет;
– д-р біол. наук, професор, професор кафедри
біотехнології та біоінженерії, Миколаївський
національний аграрний університет.

аграрний університет, 2024

3 M I C T

Вступ	4
Методика математико-статистичного аналізу імуногенетичних	
даних для великої рогатої худоби	7
Розрахунок популяційно-генетичних параметрів для	
імуногенетичних даних з використанням програми GenAIEx	12
Етап 1. Розрахунок вибіркових частот антигенів та показників	
генетичної мінливості в популяціях	17
Етап 2. Оцінка міжгрупової (міжпопуляційної) генетичної	
диференціації за антигенними факторами	27
Етап 3. Візуалізація груп у просторі генетичної мінливості з	
використанням Аналізу Головних Координат (РСоА)	34
Етап 4. R- та Q-аналіз зчепленого успадкування антигенних	
факторів	36
Список використаної та рекомендованої літератури	49

ВСТУП

Дисципліна «Генетичні ресурси сільськогосподарських тварин» розрахована на підготовку бакалавр з біотехнології та біоінженерії із освітньої спеціальності 162 «Біотехнології та біоінженерія» і займає провідне місце в системі навчання. Дисципліна є базовою для вивчення спеціальних курсів.

Дисципліна вивчає походження сільськогосподарських тварин та їх еволюцію, біорізноманіття і генофонд свійських тварин, генетичні основи їх доместикації; процеси породоутворення, класифікації та характеристики порід свійських тварин, їх породне районування, напрямки селекційноплемінної роботи із різними видами та породами сільськогосподарських тварин; структури, характеристики, значення та основні напрямки діяльності племінних підприємств України.

Мета дисципліни – вивчення походження сільськогосподарських тварин, їх еволюції і селекції; процесів породоутворення, напрямків селекційно-племінної роботи; структур, характеристик, значення та основних напрямків діяльності племінних господарств України.

Завдання дисципліни: сформувати у здобувача вищої освіти систему теоретичних та практичних навичок з питань оцінки та використання генетичних ресурсів сільськогосподарських тварин.

Предмет дисципліни: походження сільськогосподарських тварин, їх еволюція і селекція; процеси породоутворення, напрямки селекційноплемінної роботи; структури, характеристики, значення та основні напрямки діяльності племінних господарств України.

Об'єкт дисципліни: генетичні ресурси сільськогосподарських тварин.

Інтегральна компетентність

Здатність розв'язувати складні спеціалізовані задачі та практичні проблеми, що характеризуються комплексністю та невизначеністю умов у

біотехнології та біоінженерії, або у процесі навчання, що передбачає

застосування теорій та методів біотехнології та біоінженерії.

Загальні компетентності:

К04. Навички використання інформаційних і комунікаційних технологій;

К07. Прагнення до збереження навколишнього середовища;

Спеціальні (фахові, предметні) компетентності:

К11. Здатність використовувати ґрунтовні знання з хімії та біології в обсязі, необхідному для досягнення інших результатів освітньої програми;

К13. Здатність працювати з біологічними агентами, використовуваними у біотехнологічних процесах (мікроорганізми, гриби, рослини, тварини, віруси, окремі їхні компоненти);

К14. Здатність здійснювати експериментальні дослідження з вдосконалення біологічних агентів, у тому числі викликати зміни у структурі спадкового апарату та функціональній активності біологічних агентів;

К24. Здатність дотримуватися вимог біобезпеки, біозахисту та біоетики.

Додаткові компетентності:

К26. Здатність розробляти та застосовувати на практиці нові біотехнології, що дозволяють підвищити ефективність тваринництва.

Програмні результати навчання:

ПР11. Вміти здійснювати базові генетичні та цитологічні дослідження з вдосконалення і підвищення біосинтетичної здатності біологічних агентів з урахуванням принципів біобезпеки, біозахисту та біоетики (індукований мутагенез з використанням фізичних і хімічних мутагенних факторів, відбір та накопичення ауксотрофних мутантів, перенесення генетичної інформації тощо); ПР14. Вміти обґрунтувати вибір біологічного агента, складу поживного середовища і способу культивування, необхідних допоміжних робіт та основних стадій технологічного процесу;

Додаткові програмні результати:

ПР25. Вміти розробляти та застосовувати на практиці нові технології, що дозволяють підвищити ефективність тваринництва: техніку трансплантації і мікроманіпуляцій на ембріонах домашніх тварин, отримання кормових засобів (білок, амінокислоти, вітаміни) мікробіологічним синтезом.

МЕТОДИКА МАТЕМАТИКО-СТАТИСТИЧНОГО АНАЛІЗУ ІМУНОГЕНЕТИЧНИХ ДАНИХ ДЛЯ ВЕЛИКОЇ РОГАТОЇ ХУДОБИ

Имуногенетичні дані, отримані після проведення серологічних досліджень для великої рогатої худоби мають деякі особливості, що інколи ускладнюють їх аналіз із популяційно-генетичної точки зору. Останній підхід потребує наступної інформації:

- оцінок частот фенотипів, генотипів та алелей за певними локусами (тобто, для відповідних еритроцитарних антигенів груп крові);
- оцінок рівня генного різноманіття у самому широкому розумінні (наприклад, за М.Неем);
- визначення ступеня генетичного інбридингу;
- оцінки рівня генетичної диференціації між групою популяцій або інших зоотехнічних одиниць;
- встановлення рівня генетичної подібності між групами популяцій або інших зоотехнічних одиниць (наприклад, за М.Неєм, Л.Животовським і т.і.);
- та інші.

На відміну від результатів аналізу білкового поліморфізму крові чи молока, або молекулярно-генетичних маркерів із кодомінантним типом успадкування (наприклад, мікросателітів, тощо), при проведенні імуногенетичного аналізу великої рогатої худоби дуже важко отримати повну генотипову формулу у вигляді A/B, де A та B – різні алельні форми для певного локусу. Для цього необхідно мати результати не лише досліджуваної тварини (пробанда), і його мати та батька. Такий повний генетичний аналіз часто не проводиться, тому результатом імуногенетичної експертизи тварини найчастіше є лише її **фенотип**, тобто, формульний запис, який складається із переліку антигенів крові, що були відмічені при постановці серологічного аналізу.

Другою важливою особливістю імуногенетичного аналізу великої рогатої худоби є дуже висока кількість алелей, зареєстрованих для деяких антигенних систем. Наприклад, за 12 генетичними системами антигенів великої рогатої худоби на теперішній час виділено більше 100 антигенів, в яких враховано більше, ніж 500 алелей (більшість яких входять до систем B та C). Наявність великого алельного різноманіття, можливість прояву у особини декількох алелей за однією системою призводить до ситуації, коли в популяції неспоріднених тварин кожна зареєстрована алель (насамперед, за системою В) є унікальною, що унеможливлює проведення популяційногенетичного аналізу за тим планом, що було викладено вище.

Тому нами було запропоновано новий, більш адекватний і технічно спрощенний, підхід до аналізу імуногенетичної мінливості великої рогатої худоби. Він полягає в наступному.

В цілому нами під час аналізу було виявлено наявність 53 антигени (табл. 1). В такому разі всю імуногенетичну формулу повністю (тобто, у випадку, коли зустрічаються всі 53 антигени) можна записати наступним чином:

$A_1 A_2 Z' B_2 G_2 G_3 K I_1 I_2 O_1 O_2 P_2 Q T_1 T_2 Y_2 A'_1 \dots UU' H'' U''Z.$

Ми пропонуємо перейти від такої загальноприйнятої форми запису імуногенетичного фенотипу будь-якої тварини до розглядання його у вигляді складного бінарного запису, де для кожної алелі, яку було відмічено у групі тварин, що аналізується, необхідно ставить символ "1", якщо ця алель серологічно фіксується, або символ "0", якщо аглютинація не

8

відбулася. В цьому випадку, наприклад, для особини, що має за системою *А* лише одну алель – *A*₂, формула буде мати наступний вигляд: 0 1 0 ... Аналогічно кодується наявність/відсутність кожного із 53 антигенів (алелей), що зареєстровані у кожної аналізованої тварини.

Таблиця 1

			A	Системи				
Α	В	С	F	J	L	Μ	SU	Ζ
A_{I}	B_2	C_{I}	F	J	L	М	S_{I}	Ζ
A_2	G_2	C_2	V				H'	
Z'	G_3	E					U	
	Κ	R_{I}					U'	
	I_{l}	R_2					H''	
	I_2	W					U''	
	O_{I}	X_{l}						
	O_2	X_2						
	P_2	C						
	Q	L'						
	T_{I}							
	T_2							
	Y_2							
	A'_{l}							
	A'_2							
	B'							
	D'							
	E'_2							
	Gʻ							
	I'							
	K'							
	J'_2							
	0'							
	P'							
	Q'							
	Y'							
	<i>B</i> ''							
	G"							

Перелік антигенів великої рогатої худоби, виявлених під час

У цьому випадку загальна матриця із вихідними даними при запису їх у табличному редакторі MS Excel буде мати наступний вигляд (рис. 1). З одного боку така форма запису уніфікує дані, отримані для різних тварин, а з іншого боку – вже дозволяє провести розрахунки популяційногенетичних параметрів, які були надані вище.

В такому вигляді (набір одиниць та нулів) дана форма запису результатів імуногенетичних досліджень певної тварини може бути визначена як її **гаплотип**. Майже аналогічний підхід до визначення гаплотипного різноманіття використовується і у випадку аналізу структури послідовності ДНК за участю певного набору ендонуклеаз рестрикції. В більш широкому розумінні, *гаплотипом* називають комбінацію алелей тісно зчеплених локусів.

A	B	С	D	E	F	G	Н	Т	J	К	L	М	Ν	0	P	Q	R	S	Т	U	V	w	Х	Y	Ζ	AA	AB	AC	AD	AE	AF	AG
1																																
2	Сис	тема	àА													Сис	тем	аΒ														
3	A1	A2	Z'	B2	G2	G3	к	11	12	01	02	P2	Q	T1	T2	Y2	A'1	A'2	B'	D'	E'2	G'	ľ	K'	J'2	Ο'	P'	Q'	Y'	В"	G"	C1
4 кличка и номер																																
5 актриса	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
6 русалка	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1
7 добрая	1	1	0	1	0	0	0	0	0	0	0	1	0	0	0	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	1	1
8 роботка	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
9 палатка	1	1	0	1	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0
10 десятка	1	1	0	1	1	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	1	1	0	0	1	0
11 лаванда	1	1	0	1	0	0	0	0	0	1	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
12 касатка	1	1	0	1	1	1	0	0	0	1	1	1	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
13 разлука	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
14 балерина	0	0	0	1	1	1	1	0	0	1	1	0	0	0	0	0	1	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0
15 кукла	0	0	0	1	1	1	0	0	0	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	0	0	0
16 Bexa	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17 нимфа	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
18 рассада	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
19 красуня	1	1	0	0	0	0	0	1	1	0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0
20 рыбка	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	0	1	0
21 василек	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	1	0	0	0	0	1	1	0	0	1	1
22 иволга	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	1	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0
23 река	0	0	0	1	1	1	1	0	0	1	1	0	0	0	0	0	1	1	0	0	1	0	0	0	0	1	0	0	0	0	0	0
24 арка	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0
25 лирика	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	1	0	1	0	0	0	1
26 syxpa	0	0	0	0	0	0	0	1	1	0	1	0	1	0	0	0	1	1	0	0	1	0	0	0	0	0	0	1	0	0	0	0
27 лиска	0	0	0	1	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Рис. 1. Зовнішній вигляд електронного аркуша MS Excel із результатами імуногенетичного аналізу дослідної популяції великої рогатої худоби

Така складна бінарна форма запису вихідних даних має ряд переваг.

1. Вона відображує увесь набір антигенів, які були виявлені для певної тварини. Тобто, така форма є комплексною, що забезпечує важливу перевагу при аналізі генетичної структури популяції чи групи популяцій. При цьому враховується незалежне успадкування кожного антигенного фактора, а також незалежне успадкування самих систем антигенів.

2. Вона відмічає наявність того чи іншого антигену, хоча при цьому важко визначити – чи є певна тварина гомозиготною чи гетерозиготною за даним геном (антигеном), оскільки немає інформації про генотип її батьків. Але ми можемо використати навіть таку неповну інформацію, якщо враховуватимемо, що система успадкування кожної алелі є домінантна. В цьому випадку, тварин із відсутніми тими чи іншими антигенами можна розглядати як рецесивні гомозиготи і на підставі їх частоти визначити частоту певної алелі.

3. Вона дозволяє проаналізувати і характер зчеплення груп антигенів, які формують алелі. При цьому для матриці, подібної до тієї, що наведено на рисунку 1, можна проводити два різних типи аналізів. R-аналіз дозволяє проаналізувати розподіл окремих тварин (чи їх груп) у багатовимірному просторі виявлених антигенів (чи їх груп) на підставі матриці їх подібності, розрахованої за допомогою міри Хеммінга (див. нижче). З іншого боку, Qаналіз дозволяє на підставі матриці подібності між окремими антигенами у різних тварин проаналізувати ступінь зчепленого успадкування між антигенами та встановити, вклад яких антигенів (чи їх груп) більш вагомий при диференціації тварин різного походження.

4. При появі нового антигенного фактора він дописується у кінці ряду антигенів відповідної системи у повній бінарній формулі, а для попередніх тварин та їх груп у цьому стовпчику матриці проставляються нулі.

5. Нарешті, такий підхід дозволяє значно автоматизувати як процес накопичення та збереження імуногенетичної інформації (наприклад, за

11

допомогою редактора електронних таблиць MS Excel), а також використовувати сучасне програмне забезпечення для проведення популяційно-генетичного аналізу імуногенетичних даних.

РОЗРАХУНОК ПОПУЛЯЦІЙНО-ГЕНЕТИЧНИХ ПАРАМЕТРІВ ДЛЯ ІМУНОГЕНЕТИЧНИХ ДАНИХ З ВИКОРИСТАННЯМ ПРОГРАМИ GenAIEx

Всі розрахунки ми проводили з використанням програми "Генетичний аналіз в Excel'e" (GenAIEx v. 6.0), що була розроблена австралійськими вченими-генетиками Р.Пиколлом та П.Смаусе у 2006 році (Peakall, Smouse, 2006). Ця програма має декілька переваг. По-перше, вона являє собою програму типу Add-In, тобто, вбудовується в табличний редактор MS Excel і використовує дані, що набрані у цьому редакторі. А по-друге, ця програма розповсюджується безкоштовно і її можна вільно скачати в Інтернеті на сайті авторів (<u>www.anu.edu.au/BoZo/GenAIEx</u>). Нарешті, по-третє, вона здатна розрахувати популяційно-генетичні параметри, що нас цікавлять, на підставі бази імуногенетичних даних, яка записана у бінарній формі як, наприклад, наведено на рисунку 1.

Але для проведення необхідних розрахунків по-перше необхідно встановити програму. Для цього необхідно відкрити новий аркуш MS Excel. У головному Меню знайти опцію "Сервис" і у ньому вибрати процедуру "Надстройки" (рис. 2).

Далі необхідно клацнути кнопку "Обзор". Знайти папку "GenAIEx_6", відкрити її, обрати файл GenAIEx6.xla та клацнути кнопку ОК (рис. 3).

Програма GenAIEx 6 з'явиться у переліку Надбудов на вашому комп'ютері. У віконці напроти цієї програми повинна стояти галочка. Для того, щоб її запустити необхідно натиснути на кнопку **ОК** (рис. 4). Тоді у переліку головного Меню з'явиться нова опція "GenAIEx", а програма

почне працювати, внаслідок чого на фоні аркуша MS Excel з'явиться її сторінка (рис. 5), яка зникне через декілька секунд.

	B R ∧ %	🗉 🖪 🚫 🗠 .	r 64 - 👹	🦉 Σ,		🛄 🔮 🍕	5 100% ▼	2 9	BOOKCASE	
Arial Cyr	• 10 •	ж к ц 📰		\$ %	, ,00 ,00	律律	🔄 • 🔕 • ₁	<u>A</u> -		
A1	<u> </u>									
A	ВС	D D	E	F	G	Н	1	J	K	L
1										
2										
3										
16										
5							2 1			
6		ha	строики							
7		Спи	ісок <u>н</u> адстроі	ek:			ж			
3		E	PopTools							
3			Rookcase			OTI	иена			
0			Solus97			1				
1		— Ē	Автосохране	ние		063	op			
2		<u>Г</u>	Мастер подс	тановок						
3		<u>[</u>	Мастер сумм	ирования						
4			Мастер шабл	юнов спарой		1				
5			Основление	связеи		4				
6			A CONTRACTOR OF CONTRACTOR OFO							
7		-fia	жет анализа							
8										
9										
0										
!1		85					12			
2										
Contraction of the Contraction o										
13										

Рис. 2.

<u>•</u> <u>⊕</u> айл	Правка <u>В</u> ид В	ст <u>а</u> вка Фо	р <u>м</u> ат <u>С</u> ер	вис Данные	<u>Ш</u> кно <u>?</u>		6 1 40 60				-0
L) 🖙 📙	a 🖉	¥ 🗈 🕻	3 🝼 🖻) Y CH Y	δ 🕹 🕹 Σ	∫≈ â ↓	#+ 📶 🗟 🤞	100%	- 🖸 🛛 🐨	BOOKCASE	
Arial Cyr	▼ 10	• ж	КЦ	F≣∃	B 😨 %	, ,08	,00 f≢ f≢	🔛 • 🔕 •	<u>A</u> -		
A1	-	=	1.12		1110						
A	В	С	D	E	E	G	H	Ĩ.	J	K	L
1	_										
2	Déson				1			1	1	2 2	
3	COSOP				-	I. I. Interio		printed (printed)			
• · · · · · · · · · · · · · · · · · · ·	Папка: 🗋 🤅	GenAIEx_6			E 🤇						
5	GenAlEx6 [Documents							ОК		
7	GenAlEx6 E	Examples							2 2		
3	GenAlEx6								Отмена	•	
3									От <u>б</u> ор.	a	
0											
1											
2											
4											
5	1										
6											
7	Найти файлы	отвечающи	IE VCROB/404	4.		_		.7			
8	Има файла:	0.004010000	о условия		Текстісв	ойство:	-	*	Найти	1	
9				- International Action							
0	<u>Т</u> ип файлов:	Надстройки			Дата изм	енения:	любое время	_	Copoc		
2	Найдено фай	лов: 1.									
3	Ind		-	1	1	1		1	1 1		
.4											
	Пист1 / Лист2 /	(Лист3 /									
							1				-

Рис. 3.

🗅 🥔 🔛	a 🕽 🖗	X 🗈 🕻	3 🝼 🗠	- C4 + 🍓 🎙	$\mathbf{\hat{F}} = \mathbf{\Sigma} f_{\mathbf{x}}$	A↓ A↓	🛍 🔮 🕯	3 100% -	2	BOOKCASE	
Arial Cyr	• 1	о т ж.	кц≣		9% ,	•,0 ,00 ,00 ,00		📃 • 🕭 •	Α-		
A1	<u> </u>	=									
А	В	С	D	E	F	G	Н	1	J	K	L
1	1										
2											
3											
4											
5			-								
5			H	адстройки				? ×			
7			C	писок надстроек:							
3			Γ	Analysis ToolPal	- VBA	2	J –	JK			
3			Г	Axum Add-In			- От	мена			
0			E.	GenAlEx 6							
1				PopTools			06	op			
12			ŕ	SampleCalc							
3			i i	_ Solus97							
4			i i	Автосохранени	e						
5			[_ Мастер подста	новок		-1				
16			L	Мастер суммир	ования		4	3			
17			P	GenAlEx 6							
18				GenAlEx 6.0:	Genetic Analy	sis in Exce	el. April 6, 20	06			
19				© Pi	eakall and Sm	ouse 1996	-2006	-			
20	-							20			
21				1				1			
17											
3											
04	-										
	A CONTRACTOR OF A	11					24	I			in the second

Рис. 4.

Рис. 5.

Далі необхідно сформувати аркуш з вихідними даними так, щоб їх могла прочитати програма. У загальному випадку на такому аркуші повинні бути наступні елементи (рис. 6):

	<u> Ф</u> айл <u> </u>	Правка н	ид Вста	вка Фор	мат Церв	ис Данны	ые Цкно	GenAlEx	1 AI 81	40					-10
L			V 80		S 163	* 100 *	🤗 🏩	Σ. J*	¥¥ ¥∔	11 2	80%	· • 😀	00 H	JUKLASE	k
Ar	ial Cyr	- 20	• 10	• ж к	<u>ч</u>		1	%,	*.0° ÷.0°	t岸 t岸	田•3	<mark>> - <u>A</u> -</mark>			
_	029	•	=	1											
_	A	B	C	D	E	F	G	Н	1	J	K	L	M	N	0
	53	120	5	10	7	28	28	4/	1	120	-				
12	Gill_Data	0		Pop1	Pop2	Pop3	Pop4	Pops		Region1		1		1	1
102	Sample	Pop	Locust	Locus2	Locuss	LOCUS4	Locus5	Locuso	Locus/	Locusa	Locusa	Locusto	Locusti	LOCUS12	Locust
51	1	Popt	1	1	1	1	1	1		1	1	1	1		
	2	Pop1	1	1	1	2	1	1	1	1	1	1	1	2	
	4	Pop1	2	2	1		1	1	1	1	2	1	1	1	
_		Pop1	2	2	1	1	1	1	1	1	1	1	1	1	
-	6	Pop1	2	2	1	2	1	1	1	1	1	1	1	2	
ī	7	Pop1	2	2	1	2	2	2	2	1	1	1	1	1	
	. 8	Pop1	2	2	1	1	1	2	1	1	1	2	2	1	
)	9	Pop1	1	1	1	1	. 1	2	1	1	1	2	2	1	
3	10	Pop1	1	1	1	1	. 1	1	1	1	1	1	2	1	
1	11	Pop2	2	2	1	1	. 1	1	1	1	1	2	2	1	
5	12	Pop2	1	1	1	2	2	2	2	1	1	1	1	1	
5	13	Pop2	2	2	1	2	1	1	1	1	1	2	2	2	
,	14	Pop2	2	2	1	2	1	1	1	1	1	1	1	1	
;	15	Pop2	1	1	1	2	1	1	1	1	1	1	1	2	
9	16	Pop2	1	1	1	2	2	2	2	1	1	2	2	! 1	
)	17	Pop2	1	1	1	2	1	1	1	1	1	2	2	1	
15	18	Pop3	1	1	1	2	1	1	1	1	1	1	1	2	
	19	Pop3	2	2	1	2	1	1	1	1	1	1	1	1	-
}	20	Pop3	2	2	1	2	1	1	1	1	1	1	1	2	
0	21	Pop3	2	2	1	1	1	1	1	1	1	1	1	1	
5	22	Pop3	2	2	1	2	1	1	1	1	1	1	1	2	
3	23	Pop3	2	2	1	2	2	2	1	1	1	1	1	1	
1	24	Pop3	2	2	1	2	1	1	1	1	1	2	2	: 1	
3	25	Pop3	2	2	1	2	2	2	1	1	1	2	2	2	
3	26	Pop3	2	2	1	2	1	1	1	1	1	1	1	1	
K	I > H C	Лист2	/ Лист3 /	/						•					•
Ű								1							

Рис. 6.

Клітка	Інформація
аркуша	
A1	- кількість локусів, що включено до аналізу (у нашому видалку – загальна кількість еритропитарних антигенів:
	53), тобто, загальна кількість стовпчиків матриці
	вихідних даних;
B1	- загальна кількість особин, які використовуються при
	аналізі, тобто, загальна кількість строчок матриці
	вихідних даних: 120;
C1	- кількість груп (популяцій), що використовуються в
	аналізі;

- чисельність кожної групи (в нашому випадку їх п'ять,
тому використано п'ять кліток; зрозуміло, якщо груп
більше, то використовуються додатково клітки
праворуч);
- кількість сукупностей груп (в програмній мові –
регіонів); в загальному випадку – це наступна клітка після
останньої, що містить об'єм останньої групи;
- загальна кількість особин в кожній із сукупностей груп;
в нашому випадку таких сукупностей одна, тому її
чисельність дорівнює загальній чисельності досліджених
тварин; але, якщо б таких сукупностей було б більше – їх
чисельності необхідно було б занести послідовно в клітки
праворуч;
- пояснення для набору вихідних даних (в нашому

	праворуч;
A2	- пояснення для набору вихідних даних (в нашому
	випадку – це дані, що використані в дослідженнях
	М.І.Гиль (2008), тому ми дали назву – Gill_Data);
D2 - H2	- імена для груп тварин (згідно програмної мови їм

	надаються імена – Рор1, Рор2, Рор3 і т.д.); якщо груп
	тварин (популяцій) більше, то використовуються
	наступні клітки праворуч;
J2	- ім'я для сукупності груп (згідно програмної мови для
	таких сукупностей прийнято ім'я Region); якщо таких сукупностей груп більше, то використовуються наступні

	клатки праворуч;
A3	- заноситься слово "Sample", тобто "проба" англійською;
A4 – A123	- послідовно заносяться номера тварин (для нашого
	випадку від 1 до 120);
B3	- заноситься слово "Рор", тобто скорочення від
	"популяція" англійською;
D4 D100	• • • •

B4 - B123	- послідовно заносяться кодові позначення належності
	кожної тварини до певної групи (для нашого випадку
	використовуються позначення Рор1, Рор2,, Рор5);
	таким чином зрозуміло, що тварина із порядковим
	номером, наприклад, №22 належить до третьої групи (має
	код Рор3) і т.д.
C3 - BC3	- ім'я для кожного локусу (антигену); згідно програмної

$C_{3} = DC_{3}$	- ім я для кожного локусу (антигену), згідно програмної
	мові використовуються позначення Locus1, Locus2,,
	Locus53 (у нашому випадку використовується 53
	антигени);
C4 - BC123	- код для результатів серологічної реакції для кожної
	тварини по кожному антигену: у випадку, коли реакція

D1 – H1

I1

J1

негативна, тобто, антиген відсутній – заносимо цифру
"1", а коли реакція позитивна, тобто, антиген присутній —
заносимо цифру "2" (згідно програмної мови цифра "0"
означає відсутні або пропущені дані); таку матрицю з
даними легко можна отримати із матриці, що наведено на
рисунку 1, долавши до кожного значення одиницю.

Після цього аркуш, що містить готову для аналізу вибірку даних, необхідно перейменувати і надати йому ім'я "D", від англійського "Data" – дані.

Тепер наші імуногенетичні дані повністю готові до популяційногенетичного аналізу. Продемонструємо послідовність етапів проведення такого аналізу.

Етап 1. Розрахунок вибіркових частот антигенів та показників генетичної мінливості в популяціях.

Для цього необхідно (при відкритому аркуші із даними) знайти у Головному Меню опцію "GenAIEx" та клацнути по неї. В меню, що містить перелік всіх основних опцій програми, треба обрати опцію "Frequency..." (Розрахунок частот) та клацнути по неї (рис. 7).

З'явиться закладка "Allele Frequency Data Parameters" (Параметри частот алелей). В цій закладці автоматично буде заповнено майже всі клітки, але необхідно самому обрати "Data Format" (Формат даних), обравши тип "Haploid" (Гаплоїдні) (рис. 8). Після цього клацнути по кнопці <u>ОК</u>.

З'явиться нова закладка "Haploid Frequency Options" (Опції для розрахунку гаплоїдних частот). Вона містить перелік показників, які можна вказати програмі для розрахунку. Насамперед, це:

- Frequency by Pop розрахунок частот для окремих популяцій (із можливістю зобразити вихідні дані у графічній формі);
- Haploid Diversity by Pop генетичне (гаплоїдне) різноманіття для окремих популяцій;

E) 🗃 🖬	1 🖨 🖸	L 💞 🐰	h 🖪	🥩 👳	v Cal v	🍓 😍	Frequency		I 🔮 -	80%	- 2	1 B	DOKCASE	
A	ial Cyr		➡ 10	- X A	с <u>ч</u> ≣		🗄 😨	HWE	3		😐 - 👌	• - <u>A</u> -			
	BC123	•	=	2				AMOVA							
	A	B	С	D	E	F	G	AMOVA		J	K	L	M	N	0
	53	120	5	10	7	28	28	Mantel		120					
2	Gill_Data			Pop1	Pop2	Pop3	Pop4	PCA		gion1					
3	Sample	Pop	Locus1	Locus2	Locus3	Locus4	Locus5	Assignment		cus8	Locus9	Locus10	Locus11	Locus12	Locus1
1	1	Pop1	1	1	1	1	1			1	1	1	1	1	
5	2	Pop1	2	2	1	2	1	Spatial		1	1	1	্ৰ	2	
6	3	Pop1	1	1	1	2	1	opular D L L L		1	1	1	1	2	
7	4	Pop1	2	2	1	1	1	Helatedness		1	2	1	1	1	
В	5	Pop1	2	2	1	1	1	Multilocus		1	1	1	1	1	
Э	6	Pop1	2	2	1	2	1			1	1	1	1	2	
0	7	Pop1	2	2	1	2	2	Template	۲	1	1	1	1	1	
1	8	Pop1	2	2	1	1	1	Create	1	1	1	2	2	1	
2	9	Pop1	1	1	1	1	1	Ciedle		1	1	2	2	1	
3	10	Pop1	1	1	1	1	1	Parameters	کر	1	1	1	2	1	
4	11	Pop2	2	2	1	1	1	Data		1	1	2	2	1	
5	12	Pop2	1	1	1	2	2			1	1	1	1	1	
6	13	Pop2	2	2	1	2	1	Import Data		1	1	2	2	2	
7	14	Pop2	2	2	1	2	1	David		1	1	1	1	1	
8	15	Pop2	1	1	1	2	1	naw Data		1	1	1	া	2	
9	16	Pop2	1	1	1	2	2	Edit Raw Data	+	1	1	2	2	1	
0	17	Pop2	1	1	1	2	1	Export Data	+	1	1	2	2	1	
1	18	Pop3	1	1	1	2	1			1	1	1	1	2	
2	19	Рор3	2	2	1	2	1	Graph		1	1	1	া	1	
3	20	Pop3	2	2	1	2	1	Ch h		1	1	1	1	2	
4	21	Pop3	2	2	1	1	1	Stats	*	1	1	1	1	1	
5	22	Pop3	2	2	1	2	1		3	1	1	1	1	2	
6	23	Pop3	2	2	1	2	2	Uptions	•	1	1	1	1	1	
7	24	Pop3	2	2	1	2	1	1 1	1	1	1	2	2	1	
8	25	Pop3	2	2	1	2	2	2 1		1	1	2	2	2	
9	26	Pop3	2	2	1	2	1	1 1		1	1	1	1	1	
0.0		О / ЛИСТ2	(ЛистЗ)	1				S	4		2				•

Рис. 7.

		3 ∰ X ⊡	• @ . ⊘ 0	+ Cil +		😨 Σ	fx A.	[A]	(i)) 🧃) 🔏 e	0% -	2 678 B	OOKCASE	
0ri		S. V 00 C	v <i>v</i> π ≡		. 53	ତ୍କ - ଭ %	··· #	0 ,00			A			÷.
-	arcyr	1 10 g				ay /o	3 ,0	0 +,0		* <u> </u>	· · ·			
_	BC123	= 2												
	A B	C	D E	F	0	\$	H K	1	J	ĸ	<u> </u>	М	N	0
1	53 12	0 5	Allele Freque	nou Dista	Dara	motore						21 11		
2	Gill_Data	Pop	Milele Treque	ncy Data	T dia	lifeters								
3	Sample Pop	Locus1 Loc										us11	Locus12	Locus1:
4	1 Pop1	1									OK		1 1	
5	2 Pop1	2	#Loci (A1)	5	3	Pop. 9	ize				1000000		1 2	
6	3 Pop1	1		1		0.000	255	-					2	
7	4 Pop1	2	#Samples (B	n 1	20			10			Cancel		1 1	
В	5 Pop1	2	a subject (see	·				7		-			1 1	i
9	6 Pop1	2	#Pons (C1)	5				28					1 2	
0	7 Pop1	2		1]28	<u> </u>	07	100120000		1 1	
1	8 Pop1	2								C	lear Pops.		2 1	
2	9 Pop1	1	Data Family										2 1	<u> </u>
3	10 Pop1	1	-Data Format-								2010/201		2 1	
4	11 Pop2	2	One Colump/I	ocus		Two Co	lumns/Le	rus		+	add Pops.		2 1	
5	12 Pop2	1	ono columny			1110 00	iann ioyea	cas					1 1	
6	13 Pop2	2	C Binary			C Coc	lominant						2 2	1. I
7	14 Pop2	2	Hanloid										1 1	1
8	15 Pop2	1	se inapioid j										1 2	
9	16 Pop2	1											2 1	
0	17 Pop2	1										- C	2 1	
21	18 Pop3	1											1 2	1
22	19 Pop3	2										19	1 1	1
3	20 Pop3	2											1 2	1
24	21 Pop3	2										1. The	1 1	
25	22 Pop3	2											1 2	1 8
26	23 Pop3	2	Title Gill_	Data								1.12	1 1	1
27	24 Pop3	2	a second a second		-							1.1	2 1	1
28	25 Pop3	2	Worksheet P	refix									2 2	
9	26 Pop3	2			100								1 1	1
		2 / Лист3 /												F
100	A contraction		6				1156							

C	I 😅 日	60	L 😽 🕺		1	စင္း 😫 😤 🏹 🤉			9 🐶	80%	- 🝳	N BO	DOKCASE	
Ar	ial Cyr		• 10	- ж к	ч	E = = 🖽 😨 %	,00, 0, * ,00,	-	Ø ≓ E	👌	- <u>A</u> -			
	BC123	•	=	2		(\$16)								
	A	B	C	D	E	F G H		J		К	L	М	N	0
	53	120	5	10		7 10 10	47 4		4001	o lad	í			
2	Gill_Data			Pop1	Pop2	Haploid Frequency Uption	3			? X				
3	Sample	Pop	Locus1	Locus2	Locus						pcus10	Locus11	Locus12	Locus1
1	1	Pop1	1	1					0	é 🗌	1	1	1	-
5	2	Pop1	2	2		Frequency by Pop		100		×	1	1	2	
)	3	Pop1	1	1							1	া	2	
	4	Pop1	2	2	-	I Graph All Loci			Can	cel	1	1	1	
3	5	Pop1	2	2		Graph by Locus					1	1	1	-
9	6	Pop1	2	2							1	1	2	
0	7	Pop1	2	2							1	1	1	
1	8	Pop1	2	2		Haploid Diversity by Pop					2	2	1	
2	9	Pop1	1	1	-	✓ Haploid Diversity by Locus					2	2	1	-
3	10	Popt	1	1	-							2		
4	11	Pop2	2	2	-	I✓ Allelic Patterns					2	2	1	
5	12	Pop2	1	1	-	Graph Pattern					1	1	1	-
7	13	Pop2		2		E an trace					2	2	2	-
	14	Pop2	4	4		I✓ Allele List						4	-	-
0	10	Pop2	4	4		Private Alleles List							Z	
9	10	Pop2	1	4		E					2	2	1	
1	10	Pop2 Pop2	1	4		IV Nei Genetic Distance					4	4	2	
2	10	Pop3		2	-	T Haploid Disequilibrium					1	1	1	-
4	20	Pop3	2	2	-						1		2	
4	20	Pop3	2	2		Page = 11	ies when No.					1	1	-
5	21	Pop3	2	2	1	Pops = 1					1		2	1
ĥ	23	Pop3	2	2							1	1	1	
7	24	Pop3	2	2							2	2	1	
8	25	Pop3	2	2		Step by Step					2	2	2	
9	26	Pop3	2	2							1	Ĩ	1	1
10	denienA -	10000	10.000	/	E			21		-				in the second

- Haploid Diversity by Locus генетичне (гаплоїдне) різноманіття для окремих локусів;
- Allelic Patterns типи алелей;
- Allele List список алелей;
- Private Alleles List список унікальних для кожної популяції ("приватних") алелей;
- Nei Genetic Distance генетичні відстані за М.Неєм.

Для подальшого аналізу необхідно обрати важливі для нас показники, як показано на рисунку 9, та клацнути по кнопці **ОК**.

Програма почне розраховувати (якщо аркуші із вихідними даними мають правильний формат), а всі результати формувати на окремих нових аркушах.

Аркуш "**AFP**" має назву "**Allele Frequencies by Pop for Haploid Data**" (**Частоти алелей в популяціях** для гаплоїдних даних). Він містить відповідні результати та має наступний вигляд (рис. 10).

За допомогою цих результатів можна визначити, що, наприклад, у Популяції №1 (Pop1; в нашому випадку це - червона степова порода) частота антигену *A*₁ (Locus1) становить 0,600 (для гаплоїдної алелі "2", тобто, для випадку наявності цього антигену).

2) 🗳 日 🎒 [g 🧩 🦹 🖪	a 🖪 🍼 🛛	NO Y CH Y	🔮 😤 Σ	: f≈ Al A	l 🛍 🔮 4	🛃 90% ·	- 🛛 🛛 🕾	BOOKCASE	
Ar	ial Cyr	▼ 10 ▼	жкц	e z 3	🗟 🦻 🤊	6 , ;88 4	% €≡ €	🔲 • 🕭 •	<u>A</u> -		
_	H5	- =									
	A	B	C	D	E	F	G	Н		J	K
1	Allele Frequenc	les by Pop for	Haploid Data	а			1				
2	D 4 D										
3	Data Sheet	D									
4	Data Irtle	Gill_Data							-		
5			/						l		
6	No. Loci	53	4								
7	No. Samples	120	1								
8	No. Pops.	5	1								
9			<u> </u>								
10	Haploid Allele F	requencies by	/Populations	\$							
11											
12	Locus	Allele	Pop1	Pop2	Pop3	Pop4	Pop5				
13	Locus1	1	0,400	0,571	0,536	1,000	1,000				
14		2	0,600	0,429	0,464	0,000	0,000				
15	Locus2	1	0,400	0,571	0,536	0,321	0,553				
16		2	0,600	0,429	0,464	0,679	0,447				
17	Locus3	1	1,000	1,000	1,000	0,929	1,000				
18		2	0,000	0,000	0,000	0,071	0,000				
19	Locus4	1	0,600	0,143	0,250	0,857	0,638				
20		2	0,400	0,857	0,750	0,143	0,362				
21	Locus5	1	0,900	0,714	0,643	0,821	0,787				
22		2	0,100	0,286	0,357	0,179	0,213				
23	Locus6	1	0,700	0,714	0,643	0,750	0,638				
24		2	0,300	0,286	0,357	0,250	0,362				
25	Locus7	1	0,900	0,714	0,750	1,000	1,000				
26		2	0,100	0,286	0,250	0,000	0,000				
	Locus8	1	1,000	1,000	0,929	1,000	0,936				
27				1 10 10 10 10 10 10 10 10 10 10 10 10 10	1	phi Minusona	1221200000				

З іншого боку, частоту власно алелі A₁ можна розрахувати за формулою:

$$pA_1 = 1 - \sqrt{1 - 0,600} = 0,368, \tag{1}$$

враховуючи домінантний тип успадкування антигенних факторів (див. вище).

Аркуш "HDP" має назву "Haploid Diversity by Population" (Гаплоїдне різноманіття у популяціях) (рис. 11). Він містить наступну інформацію:

- Рор ім'я популяції;
- **Locus** ім'я локусу;
- *N*-об'єм групи (популяції);
- Na кількість зареєстрованих для кожного локусу в кожній популяції алелей (в нашому випадку цифра "2" в цьому стовпчику означає, що даний антиген був відмічений в даній популяції, а цифра "1" – що такий антиген не був відмічений у жодної тварини даної популяції);
- *h* показник гаплоїдного генетичного різноманіття.

C) 🛩 🖬 🏼 🖨 🗋	L 💕 🐰 🗉	b 🖻 💅	O + CH +	😫 🔮 Σ	fx A A	h 🦉 🧃	3 90% •	· 🛛 🖉	BOOKCASE	
Ar	ial Cyr	• 10 •	жкц		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • •	3 (# (#	👌 -	<u>A</u> -	(
	H13 💌	=									
	A	В	С	D	E	F	G	Н	1	J	K
1	Haploid Diversity	by Populatio	on							1	
2											
3	Data Sheet	D									
1	Data Title	Gill_Data									
5											
6	No. Loci	53			()						
	No. Samples	120									
3	No. Pops.	5	i								
1			1							1	
0	Diversity by Pop										
1	-	-									
2	Pop	Locus	N	Na	h				-		
3	Pop1	Locus1	10	2	0,480						
4		Locus2	10	2	0,480						
5		Locus3	10	1	0,000						
5		Locus4	10	2	0,480						
1		Locus5	10	2	0,180						
8		Locusb	10	2	0,420						
9		Locus7	10	2	0,180				-		
0	-	Locuse	10	1	0,000						
21		Locue 10	10	2	0,180						
22	-	Locue 14	10	2	0,320						
20		Locus 11	10	2	0,420						
25		Locue13	10	2	0,420						
16		Locus 1J	10	2	0,000						
7		Locus 14	10	2	0,320						
1			10	2	0,520	0 / 0 - 0 /					ing the

Останній показник розраховується за наступною формулою:

$$h = 1 - \sum_{i=1}^{2} P_i^2 , \qquad (2)$$

де P_i – частка тварин у даній популяції, що має та не має певний антиген, відповідно.

Наприклад, якщо у Популяції №1 (Рор1; в нашому випадку це червона степова порода) частота наявності антигену *A*₁ (Locus1) становить 0,600, а частота його відсутності – 0,400, то оцінка гаплоїдного генетичного різноманіття для неї буде складати:

$$h = 1 - (0,600^2 + 0,400^2) = 1 - 0,520 = 0,480$$

Наприкінці цього аркушу наведено також оцінки для середнього по популяції гаплоїдного генетичного різноманіття (*H* – Mean Population Diversity) та очікуваної варіанси (*Ve*) кількості локусів, за якими дві випадковим чином обрані особини відрізняються.

Аркуш "HDL" має назву "Haploid Diversity by Locus" (Гаплоїдне різноманіття для локусів) (рис. 12).

8)⊈айл <u>П</u> равка <u>(</u>	<u>Вид</u> Вст <u>а</u> вка	Формат С	ервис Данн	ые <u>О</u> кно G	enAlEx <u>?</u>					_8
C) 😅 🖬 🎒 🗋	L 💱 🔏 🛙	b 🛍 💅 💧	K) y Calir	🍓 🏶 💈	f _≈ Al A	l 🛍 🔮 i	移 90% ·	· 🛛 🖉	<u>R</u> OOKCASE	
Ar	ial Cyr	• 10 •	жкц		æ 9 %	6, 584	00 € E € E	- 👌 -	<u>A</u> -		
	A1 💌	= H	Haploid Diver	sity by Loc	us						
	A	В	C	D	E	F	G	Н	1	J	K
	Haploid Diversity	by Locus					1				
2		19									
3	Data Sheet	D									
1	Data Title	Gill_Data									
5											
1	No. Loci	53									
	No. Samples	120									
3	No. Pops.	5									
1											
0	Diversity by Locu	IS									
1											
2			Locus1	Locus2	Locus3	Locus4	Locus5	Locus6	Locus7	Locus8	Locus!
3	Pop1	N	10	10	10	10	10	10	10	10	
4		Na	2	2	1	2	2	2	2	1	
5		h	0,480	0,480	0,000	0,480	0,180	0,420	0,180	0,000	(
6	Pop2	N	7	7	7	7	7	7	7	7	
7		Na	2	2	1	2	2	2	2	1	
8		h	0,490	0,490	0,000	0,245	0,408	0,408	0,408	0,000	(
9	Pop3	N	28	28	28	28	28	28	28	28	
0		Na	2	2	1	2	2	2	2	2	
1		h	0,497	0,497	0,000	0,375	0,459	0,459	0,375	0,133	0
2	Pop4	N	28	28	28	28	28	28	28	28	
:3		Na	1	2	2	2	2	2	1	1	
24		h	0,000	0,436	0,133	0,245	0,293	0,375	0,000	0,000	C
25	Pop5	N	47	47	47	47	47	47	47	47	
26		Na	1	2	1	2	2	2	1	2	
27		h	0,000	0,494	0,000	0,462	0,335	0,462	0,000	0,120	0
	D AFP	HDP HDL	APT / ALI / PA	AS / PAL / NE	I / NEIT / Ли	ст2 / Лист3	7 4				F
ea	adv						1		<u> </u>		
						11 10	1.0				

Рис. 12.

Він містить ту ж саму інформацію, що й попередній аркуш; змінено лише форму подання цієї інформації.

Аркуш "**APT**" має назву "**Allelic Patterns for Haploid Data**" (**Алельне різноманіття для гаплоїдних данних**) (рис. 13). На цьому аркуші наведено деякі показники генетичного різноманіття окремих популяцій, а саме:

- *Na* кількість алелей на локус;
- Na Freq. > 5% кількість алелей на локус, частота яких більше 5% (95% межа поліморфізму);
- *Ne* ефективна кількість алелей;
- *I*-інформаційний індекс Шеннона-Уївера;
- No. Private Alleles кількість унікальних ("приватних") алелей, тобто, алелей, що зустрічаються лише в одній популяції;
- No. LComm Alleles (<=25%) кількість спільних алелей, які зустрічаються в менш, ніж 25% популяцій;

XI	dicrosoft Excel - Data1 Файд Правка Вид Вставка	Формат (Гервис П	анные Ок	HO GenAlF	x 2						
			10 + CI	- 0. 0	Σf_{x}	. <u>4</u> 1 <i>я</i> 1	(in 🥥	A 90%	• ?	ATA ROC	KCASE	
					-	A 0 00		S	· · · ·			
Ar	ial Cyr 💌 10 💌	жкч		등 범	9%,	,00 4,0	te te	🖃 🔹 🥨	• 🗛 •			
	A33 💌 =											
6	A	B	C	D	E	F	G	Н	1	J	K	L
1	Allelic Patterns for Haploid Da	ata						-				
2												
3	Data Sheet	D										
4	Data Title	Gill_Data										
5												
6	No. Loci	53										
7	No. Samples	120										
8	No. Pops.	5										
9												- C - S
10	Mean Allelic Patterns Across	Population	s									
11												
12	Mean values	la ac										
13	Population	Pop1	Pop2	Pop3	Pop4	Pop5						
14	Na	1,811	1,623	1,849	1,679	1,774						
15	Na Freq. >= 5%	1,811	1,623	1,755	1,604	1,604						
16	Ne	1,475	1,430	1,519	1,326	1,381						
17	1	0,430	0,362	0,443	0,311	0,346						12 13
18	No. Private Alleles	0,019	0,000	0,000	0,019	0,019						
19	No. LComm Alleles (<=25%)	0,000	0,000	0,000	0,000	0,000						
20	No. LComm Alleles (<=50%)	0,075	0,038	0,132	0,113	0,132						
21	He	0,286	0,246	0,298	0,201	0,227						
22		26										
23	Standard Error (SE) values					-						-
24	Population	Pop1	Pop2	Pop3	Pop4	Pop5						
25	Na	0.054	0,067	0,050	0,065	0,058						
26	Na Freq. >= 5%	0,054	0,067	0,060	0,068	0,068						
27	Ne	0,045	0,053	0,051	0,046	0,050						
			DAS / PAL	NET / NET	Г / Пист2 /	(ПИСТЗ /)	4				1	FI
		···/···/		(nes Arises	() and the y				- <u>r</u> -r			
Rea	зау											J
-	Писк 🛛 🔁 💥 🕅 🍋 👑 (C 4 6	2 - 2 F	: 🖬 💾		Нат	MM IS	KM 124	A. 1021	n 🍋 🖂 🗸		13:10

Рис. 13.

- No. LComm Alleles (<=50%) кількість спільних алелей, які зустрічаються в менш, ніж 50% популяцій;
- *Не* очікувана гетерозиготність (у випадку гаплоїдних даних гаплоїдне генетичне різноманіття; див. вище).

У блоці "Mean values" наведені середні арифметичні для цих показників, розраховані по всіх локусах одночасно, а у блоці "Standard Error (SE) Values" – наведено відповідні статистичні помилки для кожного з цих показників.

Аркуш "ALI" має назву "Allele List for Haploid Data" (Список алелей для гаплоїдних даних) (рис. 14). На цьому аркуші наведено перелік алелей, які зареєстровано по кожному локусу, а також загальна кількість цих алелей (Total No. Alleles). Зрозуміло, що у нашому випадку завжди буде дві алелі ("1" та "2").

Arial Cyr ID X X Y IE	E) 🛩 🖬 🖨 [ð. 💱 🐰	🖻 🛍 🕇	🔊 🖛 🗸	a - 🔒 I	😨 Σ f		111 🤵 🧃	3 80%	- 🛛 🛛		SE
F20 Image: Constraint of the ploid Data B C D E F G H I J K L Allele List for Haploid Data 0	Ar	rial Cyr	• 10 •	жк	ч 🔳	E = 0	₽%	•,0 ,00 •,0 •,0		🔄 • 🕭 •	A -		
A B C D E F G H I J K L Allele List for Haploid Data -		F20	<u> </u>										
Alleles List for Haploid Data Image: state of the state		A	B	C	D	E	F	G	Н	14 1	J	K	L
Data Sheet D GIII Data Image: Construction of the state of	1	Allele List for Ha	ploid Data										
Data Stheet D Image: constraint of the straint of the		0.00000 00.000											
Data Title Gill_Data <		Data Sheet	D										
No. Loci 53 Image: State in the image: State in t		Data Title	Gill_Data					2					
No. Loci 53 Image: State in the state i		-											
No. Samples 120 Image: Constraint of the straint of th	i_	No. Loci	53										
No. Pops. 5 Image: constant state		No. Samples	120										
Alleles Locust Locus2 Locus3 Locus4 Locus5 Locus6 Locus7 Locus8 Locus8 Locus9 Locus6 Locus7 Locus8 Locus8 Locus9 Locus9 <thlocus9< th=""> Locus9 Locus9</thlocus9<>	1	No. Pops.	5										
O Alleles Locus1 Locus2 Locus3 Locus4 Locus6 Locus7 Locus8 Locus9 Locus10 Locus11 1	9	-										-	_
1 1	0	Alleles	Locus1	Locus2	Locus3	Locus4	Locus5	Locus6	Locus7	Locus8	Locus9	Locus10	Locus11
2 1	1		1 1	1	1	1		1	1	1		1 1	
3 Total No. Alleles 2 3	2		2 1	1	1	1		1	1	1		1 1	10
4 -	3	Total No. Alleles	2	2	2 2	2	1	2 2	2 2	2		2 2	
5 - <td>4</td> <td></td>	4												
	5												
	6		1					2				2	
	7												
9 9 <td>8</td> <td></td>	8												
01 0 </td <td>9</td> <td></td>	9												
	0	2		1		1	<u> </u>	4	<u>.</u>			4	-
2	1		-				-		-				
3 3 <td>2</td> <td>-</td> <td></td>	2	-											
	3												
	4	5					-		-				-
	5		-										
	6	-						-					
	1								-	-			
	0	5							-	-	-	2	-
	9			-									
	e.	adv									F 1	- I - I - I	

Рис. 14.

Аркуш "PAS" має назву "Summary of Private Alleles by Population" (Інформація про унікальні алелі у популяціях) (рис. 15). На цьому аркуші наведено інформацію про те, у якій популяції була зафіксована унікальна ("приватна") алель, яка ця алель (у нашому випадку завжди це буде алель "2", тобто, наявність антигену) та з якою частотою вона зустрічається.

Аркуш "PAL" має назву "List of Samples with One or More Private Alleles" (Перелік проб, що мають одну чи декілька унікальних алелей) (рис. 16). На цьому аркуші наведена наступна інформація:

- Sample номер проби (тобто, тварини) у загальному списку;
- Рор номер групи (популяції), до якої належить ця тварина;
- Locus1-Locus53 мультилокусний генотип для кожної з цих тварин;
- No. Loci with Private Alleles кількість локусів із унікальними алелями;
- Loci with Private Alleles ім'я локусу, для якого відмічено наявність унікальної алелі.

X I	licrosoft Excel - D	Data1								- 8 ×
	<u>Ф</u> айл <u>П</u> равка <u>В</u>	<u>З</u> ид Вст <u>а</u> вка Ф	ор <u>м</u> ат <u>С</u> ерви	с Данные <u>О</u> к	но GenAlEx	2				- 8 ×
	🖻 🖬 🍯 🖸	🐺 🐰 🖻 (🔁 🝼 🔊 -	r C4 + 🍓 🍳	Γ f _*	1 Al 🛍 1	2 🚯 100%	େ 🔹 🗿 🖣	BOOKCASE	
Ari	al Cyr	• 10 • Ж	КЦ≣	≣ ≡ ⊡	9% ,	,08 ,08 💷 t	🚝 🖂 - 👌	• - <u>A</u> -		
	F17 💌	=		014						
	A	В	C	D	E	F	G	Н	1	J
1	Summary of Pr	rivate Alleles I	oy Populatio	n	1		1			12
2										
3	Data Sheet	D								
4	Data Title	Gill_Data								
5										
6	No. Loci	53								
7	No. Samples	120								
8	No. Pops.	5								
9	10.0 10.0									
10	Pop	Locus	Allele	Freq						
11	Pop1	Locus24	2	0,100						
12	Pop4	Locus3	2	0,071						
13	Pop5	Locus30	2	0,021						
14										
15										
16										
17										
18										
19										
20										
21										
22										
23										
24										
	► N \D AFP /	HDP / HDL / APT	(ALI)PAS (PAL / NEI / NEI	Г / Лист2 / Л	ист3 / 🚺				
Rea	ady							f f		1
1	Пуск 🛛 💋 🛣 [y 🖲 🖞 🛇	le 🌽 🤣 🖉	3 🗄 🖬 💾		💾 T 👿 M 🛛	K 🛃	Bu (•	154 o G	13:18

Рис. 15.

	🗃 🖬 🤘	🖨 🖪 🚏	X 🖻 🕻	2 🝼 🔊	• CH + 🔮	ς 😤 Σ	$f_{\ast} \stackrel{\mathbf{A}}{\downarrow} \stackrel{\mathbf{A}}{\downarrow} \stackrel{\mathbf{A}}{\downarrow}$	🛍 🔮 🕯	B 100%		№ <u>R</u> OOKCASE	
Ari	al Cyr	• 1	10 💌 🗶	КЦ≣		9 %	• ,00 ,00 • ,00 ,00	te te	- 🖉 •			
	C15	•	=									
	A	В	С	D	E	E	G	н	1	J	K	L
1	53	4										
2	Gill_Data	D	List of Sa	mples with (One or More	e Private Al	leles					
3	Sample	Pop	Locus1	Locus2	Locus3	Locus4	Locus5	Locus6	Locus7	Locus8	Locus9	Locus10
4	10	Pop1	1	1	1	1	1	1	1		1 1	
5	55	Pop4	1	2	2	1	1	1	1		1 1	
5	56	Pop4	1	2	2	1	1	1	1		1 1	
7	116	Pop5	1	1	1	1	1	1	1		1 2	
3	-											
3												
0												
1												
12		-										
3												
4			-	-								
15												
6												
17												
8												
9												
20												
21												
22	-	-	-									
23												
24												

Аркуш "NEI" містить дві матриці з результатами (рис. 17):

- матриця "Pairwise Population Matrix of Nei Genetic Distance" містить для кожної пари груп (популяцій) оцінки генетичної відстані М.Нея;
- матриця "Pairwise Population Matrix of Nei Genetic Identity" містить для кожної пари груп (популяцій) оцінки генетичної ідентичності М.Нея.

Аркуш "NEIT" має назву "Pairwise Population Nei Genetic Distance Values As Table" (Попарні оцінки генетичної відстані М.Нея у табличній формі) містить оцінки генетичної відстані М.Нея, але представлені у вигляді таблиці (рис. 18). Крім того, наведено також об'єм кожної із груп (популяцій).

Ľ	🗃 🖬 🤞	🗟 🖉	¥ 🖻 🕻	1 🝼 🗠	🕶 CH 👻 🔮	ι 😤 Σ	$f_{\ast} \stackrel{A}{\underset{A}{\to}} \stackrel{A}{\underset{A}{\to}} \stackrel{A}{\underset{A}{\to}}$	l 🛍 🔮 🧃	3 100% -	2	BOOKCASE	
Ari	al Cyr	• 1	• ж	КЦ≣		9 99 9	6 , ,88 ,°	8 (* 1	🔄 • 👌 •	<u>A</u> -		
	P23	-	=					- V0				
	A	В	С	D	E	F	G	Н	1	J	K	L
	1	5										
2	Gill_Data	D	Pairwise F	opulation N	Aatrix of Ne	i Genetic	Distance					
}	Pop1	Pop2	Pop3	Pop4	Pop5							
2	0,000				0 0403000	Pop1						
ì	0,063	0,000				Pop2						
ì	0,039	0,035	0,000			Pop3						
23	0,062	0,142	0,078	0,000		Pop4						
}	0,045	0,108	0,058	0,019	0,000	Pop5						
}												
٥												
1			Pairwise F	opulation N	Aatrix of Ne	i Genetic	Identity					
2	Pop1	Pop2	Pop3	Pop4	Pop5							
3	1,000					Pop1						
4	0,939	1,000				Pop2						
5	0,961	0,966	1,000			Pop3						
6	0,940	0,867	0,925	1,000		Pop4						
7	0,956	0,898	0,944	0,981	1,000	Pop5						
8						213						
9												
0												
1												
2												
3												
4	-											
R	ND/	AFP / HDP /	HDL APT	ALL / PAS /	PAL NEL	NEIT / Пи	ст2 / ЛистЗ .	7				

Рис. 17.

В кінці відмітимо, що для отримання більшості перелічених вище популяційно-генетичних показників для всіх груп (популяцій) в цілому, необхідно зробити деякі зміни на аркуші із вихідними даними (у першій та другій строчці), як це показано на рисунку 19.

Етап 2. Оцінка міжгрупової (міжпопуляційної) генетичної диференціації за антигенними факторами.

Одним із поширених методів оцінки міжгрупової (міжпопуляційної) диференціації, який придатний для аналізу імуногенетичних даних у вигляді бінарної матриці, є метод аналізу молекулярної мінливості (Analysis of MOlecular VAriation) – AMOVA. Він базується на розрахунку відстаней між окремими особинами у багатовимірному просторі, що формують антигенні фактори, та використанні в наступному алгоритму дисперсійного аналізу Р.Фішера, тобто, алгоритму розкладання мінливості на внутрішньо- та міжгрупову компоненти.

C) 🗲 🖬 🍯 🖪	💱 🏅 🗈	🖺 ダ 🔊 + Cl -	- 🍓 😵 Σ 🖠		🛍 🔮 🦸	3 100% -	2 1	ROOKCASE	
Ar	ial Cyr	• 10 • ж	К Ц 📰 🗃 🗃	E 🛱 😨 %	•,0 ,00 •,0 •,0		🔄 • 🕭 • 🛛	A -		
	G7 💌	=								
	A	В	C D	E	F	G	Н	(I)	J	K
	Pairwise Popul	ation Nei Ge	netic Distance Val	ues As Table			14 1			
2	2005 - 2005 2005									
}	Data Sheet	D								
	Data Title	Gill_Data								
i										
ï	No. Samples	120								
	No. Pops	5				8	1			
}				1		8		1	1	
1										
0										
1	Pop1	Pop2	Nei Genetic Dista	nce #Pop1	#Pop2					
2	Pop1	Pop2	0,063	. 10	7					
3	Pop1	Pop3	0.039	10	28					
4	Pop2	Pop3	0.035	7	28					
5	Pop1	Pop4	0.062	10	28					
6	Pop2	Pop4	0.142	7	28		1			-
7	Pop3	Pop4	0.078	28	28					-
8	Pop1	Pop5	0.045	10	47					
9	Pop2	Pop5	0.108	7	47					
0	Pop3	Pop5	0.058	28	47					
1	Pop4	Pop5	0.019	28	47					
2	1.50.00				1		1			
3							-			
4				1	1	1	1	1		
т.			- Lux loss loss l		10000 11				4	

Рис. 18.

	Α	В	С	D	E	F	G	Н	1
1	53	120	1	120	1	120			
2	Gill Data			Pop1		Region1			
3	Sample	Pop	Locus1	Locus2	Locus3	Locus4	Locus5	Locus6	Locus7
4	1	Pop1	1	1	1	1	1	1	1
5	2	Pop1	2	2	1	2	1	1	1
6	3	Pop1	1	1	1	2	1	1	1
7	4	Pop1	2	2	1	1	1	1	1
8	5	Pop1	2	2	1	1	1	1	1
9	6	Pop1	2	2	1	2	1	1	1
10	7	Pop1	2	2	1	2	2	2	2
11	8	Pop1	2	2	1	1	1	2	1
12	9	Pop1	1	1	1	1	1	2	1

Рис. 19.

Мірою генетичної диференціації між популяціями є оцінка показника Φst , що є аналогом показника *Fst*, запропонованого у 1951 р. С.Райтом (Wright, 1951). При цьому, проводиться розрахунок показника як для всіх

груп в цілому, так й для кожної пари груп окремо. Для визначення рівня значущості отриманої оцінки використовується методика, що має назву "взяття повторних вибірок", або resampling-процедура.

Провести подібний аналіз для імуногенетичних даних, що ми маємо, можна наступним чином.

Необхідно відкрити аркуш із вихідними даними (див. рис. 6). Далі, в Головному меню обрати надбудову **GenAIEx**, відкрити в ньому меню AMOVA (рис. 20) та без будь-яких змін клацнути по кнопці **OK**. В наступному меню (рис. 21) обрати тип вихідних даних "**Haploid**" (Гаплоїдні) та клацнути по кнопці **OK**. У меню, що відкриється, зробити наступні зміни (рис. 22) та клацнути по кнопці **OK**. Програмі для проведення розрахунків потрібен деякий час – у випадку великих баз даних це може зайняти навіть годину – тому необхідно залишить комп'ютер у спокою, поки програма не закінчить роботу. Це стане зрозуміло, коли з'являться три нових аркуша у файлі – **AM**, **PW** та **PWT**.

Аркуш "**AM**" має назву "**Results of Analysis of Molecular Variance**" (**Результати аналізу молекулярної мінливості**) містять результати аналізу молекулярної мінливості у вигляді таблиці дисперсійного аналізу (рис. 23). В цій таблиці наведено наступні показники:

- N0 середній зважений об'єм груп;
- SSTOT сума квадратів дистанцій між всіма об'єктами всіх груп;
- Рор ім'я кожної групи (популяції);
- **n** об'єм кожної із груп (популяцій);
- SSWP сума квадратів показників відстаней між об'єктами для кожної групи (популяції);
- Summary AMOVA Table таблиця із результатами аналізу молекулярної мінливості;

) 🗲 🖬 😂 I	₫ 🕰 🦹	🖹 🔀 🎸 1977 1977 🝓 📽 🗴 🌾 射 👫 📶 🖉 👫 80% 🔹 🔇 🖉 BOOKCA:	6E
Ar	ial Cyr	▼ 10 ▼	жкц≣≣≣≣ 19%, % ###	
	E20	<u>▼</u> = 1		
	A B	C	AMOVA Data Parameters 🕺 🕺 👖 💦	0
1	53 1	20 5		
2	Gill_Data	Po	Dep Size Degine Size OK	
3	Sample Pop	Locus1 Lo	#Loci (01) S2 Region Size 4s11 Locus	12 Locus1
4	1 Pop1	1		1
5	2 Pop1	2	#Sampler (B1) 120 Capcel 1	2
6	3 Pop1	1		2
7	4 Pop1	2	#Pope (C1) 5 10 1 120 1	1
8	5 Pop1	2	*Pops(CI) [] [] [] [] [] [] [] [] [] [] [] [] []	1
9	6 Pop1	2	#Periops 1 20 Clear Pops. 1	2
0	7 Pop1	2		1
1	8 Pop1	2		1
2	9 Pop1	1	Add Pops. 2	1
3	10 Pop1	1	2	1
4	11 Pop2	2	2	1
15	12 Pop2	1	Input Data Type Clear Regions 1	1
16	13 Pop2	2	2	2
17	14 Pop2	2	Raw Data	1
18	15 Pop2	1	C Tri or Square Distance Matrix Add Regions 1	2
19	16 Pop2	1	2	1
20	17 Pop2	1	2	1
21	18 Pop3	1	1	2
22	19 Pop3	2	1	1
23	20 Pop3	2	Title Gill Data	2
24	21 Pop3	2	1	1
25	22 Pop3	2	Worksheet Prefix	2
26	23 Pop3	2	1	1
27	24 Pop3	2	2	1
28	25 Pop3	2	2 1 2 2 2 1 1 1 2 2	2
29	26 Pop3	2		1

Ж Microsoft Excel - Data1 <u>Ф</u> айл Правка <u>Вид</u> Рисунок Па ↓↓ □ ∭ Microsoft Excel - Da	литра <u>С</u> правка	X
Правка Ви	AMOVA Genetic Distance Options	? 🗙
	#Loci 53 #Samples 120	OK CA:
	Distance Calculation	Cancel
	One Column/Locus Two Columns/Locus (For AMOVA- PhiPT, Spatial, Mantel, PCA) Binary Codom - Genotypic Haploid (For AMOVA- Fst only) Codom-Allelic (For AMOVA- Rst only) Codom-Microsat Interpolate Missing Linear Genetic Geographic Options	Output To Worksheet As Tri Matrix As Sg Matrix As Column Label Matrix Sample Pop.
	Output Options Output Total Distance Only Output Distance All Loci	
	Title Gill_Data Worksheet Prefix	
Calculating AMOVA	🔾 🥔 🖉 🖃 🗄 📾 💾 🔮 📗 🛗 Total 🛐	▼Micro

Рис. 21.

AMOVA	? ×
Total Data Set Options	
#Permutations (0, 99, 999, 9999?)	999
Pie Graph Permute Value	Jes
Freq. Dist.	
Pairwise Population Options C Output Pairwise Matrix #Permutations (0, 99, 999, 9999?)	999
Cancel	ОК

Рис. 22.

D	😂 🖬 🎒 🖸	ð 🏡 🦹 🛛	à 🛍 ダ	N + 0	😫 🍕	Ϋ́Σ f _a		🛍 🔮 🕯	90%	- 🔇	₫ <u>B</u> OOKCASE	
Ari	al Cyr	• 10 •	жк	9	= 🔤	9% ,	•,0 ,00 ,00 →,0		🖂 • 👌 ·	· <u>A</u> -		
-	311	r =										
	A	θ	С	D	E	F	G	н	1	J	K	L
7				1	10%			2			8	13
8												
9												
0	1											
1			× 1	- 1								
2			TARMA STOR									
3			Within Po	ps								
4			90%									
5								2				
6								an 19				
!7				-								
8	NO	21,821										
9	SSTOT	867,467	2									
30												
11	Pop	Pop1	Pop2	Pop3	Pop4	Pop5						
12	n	10	7	28	28	47						
13	SSWP	75,700	45,714	220,893	149,214	282,426					1	
14												
15	Summary AMO\	VA Table		-								
6	Source	df	SS	MS	Est. Var.	%	Stat	Value	Prob			
17	Among Pops	4	93,520	23,380	0,763	10%			Sugara a			
18	Within Pops	115	773,947	6,730	6,730	90%	PhiPT	0,102	0,001			
39	Total	119	867,467	30,110	7,493							
10												
11								1			1	
12				_								
13	-											
	distant in the second sec	and former 1.	en tune	Lune Lune	Lus Inco	Inas law	- LAUTET	liait -				- I was a second

- Among Pops показники, які пов'язані із міжгруповою компонентою мінливості;
- Whitin Pops показники, які пов'язані із внутрішньогруповою компонентою мінливості;
- df число ступенів свободи;
- SS сума квадратів дистанцій;
- MS середній квадрат дистанцій;
- Est.Var. очікуваний середній квадрат дистанцій;
- % очікуваний середній квадрат дистанцій у відсотках;
- Stat ім'я показника генетичної диференціації;
- **PhiST** показник міжгрупової генетичної диференціації (Φst);
- Value оцінка показника Φst ;
- **Prob** рівень значущості показника Φst .

Аркуш "**PW**" із назвою "**Pairwise Population PhiPT Values**" (**Оцінки** *Фst* між парами популяцій) містить результати аналізу молекулярної мінливості у вигляді парних відмінностей між окремими групами, що включено до аналізу, у матричній формі (рис. 24). При цьому власне оцінки показника генетичної диференціації розташовані у нижній лівій половині матриці, а оцінки рівня їх значущості – у верхній правій половині матриці. (Головна діагональ, природно, містить лише одні нулі.)

Аркуш "**PWT**" має назву "**Pairwise Population PhiPT Values and Estimates of Nm As Table**" (**Оцінки** *Фst* **та руху генів між парами популяцій у табличній формі**) і містить результати аналізу молекулярної мінливості у вигляді парних відмінностей між окремими групами, що включено до аналізу, у табличній формі (рис. 25). Крім того, для кожної пари популяцій наведено оцінку руху генів (*Nm*), тобто, середню кількість мігрантів, якими обмінюються популяції за одну генерацію.

Ľ	E 🖬 🤅	S 🖉 🖓	¥ 🖻 🕻	3 🐼 🔊	• CH + 😽	5 🧐	Σ /		111 2 4	∮ 100% ◄	1 3 1 1	BOOKCASE	
Ari	ial Cyr	▼ 1	о т Ж.	КЦ 🗐		9	%	•,0 ,00 •,0 →,0	te te	📃 • 🕭 •	<u>A</u> -		
	A1	*	= 1						181 767				
	A	В	C	D	E	F		G	Н	1	J	K	Ļ
_	1	5											
ŝ	Gill_Data	D	Pairwise P	opulation F	hiPT Value	IS							
]	Pop1	Pop2	Pop3	Pop4	Pop5								
22	0,000	0,165	0,164	0,001	0,003	Pop1							
	0,024	0,000	0,406	0,001	0,001	Pop2							
ì	0,020	0,000	0,000	0,001	0,001	Pop3							
2	0,115	0,272	0,159	0,000	0,001	Pop4							
ie.	0,069	0,198	0,119	0,038	0,000	Pop5							
Ū.	-											-	
0	PhiPT Valu	ues below c	liagonal. Pr	obability va	lues based	on 999	9 pern	nutations a	are shown a	above diagor	nal.		
1	Warning! N	legative pai	rwise PhiP	T converted	to zero.		100			0000			
2		19085 - 95											
3													
4													
5													
6													
7												1	
8													
9													
0													
1													
2													
3													
4									5 - 5.6				
and a	A ALA DI	ANA DUL /D	UT /AED /		ADT / ALT /	DAG / C	IN IN	ET /NETT	isel .	n			

Рис. 24.

	· 🖉 🖬 🖨 🖸 🗸	~ <u>&</u> ≝	🖻 🔗 🔺) • CH •	😸 🧒 🕹	J≈ ä↓ ž	(† 📶 🔏	45 100%	- Q	OTO HUUKLASE	
Ar	ial Cyr 💌	10 - X	К Ц	F # 3	Ē 9 %	6 , , , , , , , , , , , , , , , , , , ,	°,8 € ≡ € ≡	📃 🗸 🔕	• 🛕 •		
	K24 💌	=									
	A	B	C	D	E	F	G	Н	1 B	J	K
1	Pairwise Populati	on PhiPT \	/alues and	Estimates	s of Nm As	Table					
2	Input as Haploid E	istance M	atrix for C	alculation	of PhiPT						
3	Data Sheet	D									
4	Data Title	Gill_Data									
5											
6	No. Samples	120									
7	No. Pops	5									
8	No. Regions	1									
3	No. Permutations	999	No. PW P	999							
10											
1	Pop1	Pop2	PhiPT	Nm	#Pop1	#Pop2	Prob	No. PW Pr	n		
12	Pop1	Pop2	0,024	9,991	10	7	0,165	999			
13	Pop1	Pop3	0,020	12,218	10	28	0,164	999			
4	Pop2	Pop3	0,000	#Div/0!	7	28	0,406	999			
5	Pop1	Pop4	0,115	1,915	10	28	0,001	999			
16	Pop2	Pop4	0,272	0,669	7	28	0,001	999			
17	Pop3	Pop4	0,159	1,327	28	28	0,001	999			
18	Pop1	Pop5	0,069	3,373	10	47	0,003	999		1	
19	Pop2	Pop5	0,198	1,012	7	47	0,001	999			
20	Pop3	Pop5	0,119	1,856	28	47	0,001	999			
21	Pop4	Pop5	0,038	6,341	28	47	0,001	999			
22											
23										(c) 3-	
24											

Рис. 25.

Етап 3. Візуалізація груп у просторі генетичної мінливості з використанням Аналізу Головних Координат (РСоА).

Для більш детального аналізу взаємовідносин між окремими групами, що включено до аналізу, у просторі генетичної мінливості можна також використати Аналіз Головних Координат (PCoA). Для проведення цього аналізу вихідні дані повинні бути представлені у вигляді матриці відстаней. Для цього можна використати матрицю з показниками міжгрупових генетичний відстаней М.Нея (рис.17), або матрицю з показниками міжгрупових оцінок показника генетичної диференціації – Фst (рис. 24).

Для отримання результатів РСоА необхідно відкрити аркуш із матрицею вихідних даних, знайти у Головному меню надбудову GenAIEx, відкрити її та обрати опцію РСА. У меню, що відкриється (рис. 26), не треба робити ніяких змін, а лише клацнути по кнопці **ОК**. Програма здійснить необхідні розрахунки, результати яких буде надано на новому аркуші – "**PCA**" – "**Principal Coordinates Analysis (PCA)**"(**Аналіз Головних Координат**) (рис. 27а). На цьому аркуші наведена наступна інформація:

- Percentage of variation explained by the first 3 axes відсоток мінливості, що пояснюється першими трьома осями;
- Axis номер осі (від 1до 3);
- % власне оцінки відсотку мінливості;
- Сит% накопичені оцінки відсотку мінливості.

Далі, на аркуші наведено графік розподілу центроїдів кожної із груп (популяцій), що включено до аналізу, у просторі перших двох осей.

Нижня частина аркуша містить таблицю "Eigen Values by Axis and Sample Eigen Vectors" – "Власні оцінки для кожної осі та власні вектори для груп" (рис. 27b).

Рис. 27а.

		🗸 🕺) 🖪 🔗	K) + (CH 👻 🤘	5 😴	Σ 1	÷ 3	, ∦ †		9 🚯	80%	•	2	00 <u>B</u> 00	KCASE	
Arial Cyr		• 10 •	жкц			9 9 S	%	, ,	0 ,00 ↓,0	饆		_ • 👌	- <u>A</u>	•			
K1	18 🗾	=											_				
2 au	A	B	C	D	E	F		G	н	0	L.	J		ĸ	L	M	100
%	•	69,33	15,23	9,18			_			-			-				
Cum	70	09,00	04,30	93,74				-		-							
	22	Prin	cipal Co	ordinate	IS		di.										
Coord. 2	+ Pop4 *	Pop5	* Po	p1		• F	⁵ op2	4.1									
	0.000000			• P	op3			- 3									
			Coor	d. 1						_			_				-
																	3
Eigen	Values by Axis	s and Samp	le Eigen V	ectors			_			_							
Axis	No.	1	2	3	4		_						_				
Eigen	ivalue	0,045	0,010	0,006	0,004		_	_		_			-				-
Pop7		0,009	0,000	0,009	-0,003		-			-							
Pop2		0,058	-0,020	0.060	0,012											-	
Pop4		-0.123	-0.023	-0.002	-0.041			-		-						-	-
Pop5		-0,084	-0,013	-0,024	0,046												1.
100																	1

Рис. 27b.

Аналогічний аналіз можна провести для кожної матриці, що містить оцінки відстаней, виміряні будь-яким методом розрахунку генетичної

відмінності, між парами груп (популяцій) за умови, що вихідні дані будуть мати прийнятний для програми GenAIEx формат (див. рис. 17 та рис. 24).

Етап 4. R- та Q-аналіз зчепленого успадкування антигенних факторів.

Як ми вже вказали вище, матриця із мультилокусної формули генотипу будь-якої тварини, що записана у бінарній формі (рис. 1), може бути також використана для аналізу асоціації між окремими антигенними факторами, що може свідчити про їх зчеплене успадкування. При цьому, такий аналіз можна провести у двох варіантах. Аналіз між окремими пробами (тваринами) чи їх групами у просторі антигенних факторів (Rаналіз), або аналіз між окремими антигенними факторами на підставі їх наявності у окремих тварин (Q-аналіз). У першому випадку розраховується матриця відстаней між окремими особинами (чи групами), а у другому – між окремими антигенними факторами.

У будь-якому випадку, обидва типи аналізу можна провести з використанням модулю "Cluster Analysis" (Кластерний аналіз) програми "STATISTICA".

Для проведення R-аналізу попередньо необхідно зробити деякі попередні розрахунки, насамперед, розрахувати координати центроїдів кожної вибірки у реальному 53-вимірному просторі антигенних факторів, що використовуються в аналізі. Для цього використаємо опцію "Breakdown & one-way ANOVA" ("Класифікація та однофакторний дисперсійний аналіз") модуля "Basic Statistics and Tables" ("Описова статистика та таблиці") (рис. 28). В меню, що відкриється необхідно обрати змінні. В якості факторної змінної (Grouping) необхідно обрати змінну, що містить інформацію щодо належності кожної тварини до однієї із п'яти груп (популяцій). А в якості залежної змінної (Dependent) - обрати 53 стовпчики, що містять інформацію щодо наявності/відсутності певного антигенного фактора (рис. 29).

Walk 1 Descriptive statistics 5 6 7 8 9 1.0 11 200 20 1 1000 2000 1000 1000 0.000<	TEXT	ال ا الا	Startup <u>P</u> anel Resume <u>A</u> naly	vsis				+ + 4 	+.0.00 .00 +.0 ×	=? 123 4	an)	
COD_ PE Conclusion matrices VARS VAR	VALU	1	Descriptive st	atistics		5	6	7	8	9	10	11
3 Point electronizadore transfes 1.000 0		OD_PC	Correlation ma	trices		VAR5	VAR6	VAR7	VAR8	VAR9	VAR10	NEWVAL
A Prof with lets for dependent samples 0.000	23	Poj 👔	t-test for indep	endent sample	s	1,000	0,000	0,000	0,000	0,000	0,000	0,0
b Pro B field dyn b on-way ANDVA 0.000	4	Poj 😽	t-test for depe	ndent samples	j	0,000	0,000	0,000	0,000	0,000	1,000	0,1
Bit B Port mile Frequency tables 1.000 0.000 </td <td>5</td> <td>Poj 💏</td> <td>Breakdo<u>w</u>n &</td> <td>one-way ANO</td> <td>/A</td> <td>0,000</td> <td>0,000</td> <td>0,000</td> <td>0,000</td> <td>0,000</td> <td>0,000</td> <td>0,1</td>	5	Poj 💏	Breakdo <u>w</u> n &	one-way ANO	/A	0,000	0,000	0,000	0,000	0,000	0,000	0,1
Program Tables and barners 1.000 1.000 1.000 0.000 </td <td>6</td> <td>Po] III</td> <td>Frequency tab</td> <td>oles</td> <td></td> <td>1,000</td> <td>0,000</td> <td>0,000</td> <td>0,000</td> <td>0,000</td> <td>0,000</td> <td>0,1</td>	6	Po] III	Frequency tab	oles		1,000	0,000	0,000	0,000	0,000	0,000	0,1
B Program Description Description <thdescription< th=""> <thdescription< th=""> <thdescriptio< td=""><td>SC 7</td><td>Poj</td><td>Tables and ba</td><td>anners</td><td></td><td>1,000</td><td>1,000</td><td>1,000</td><td>1,000</td><td>0,000</td><td>0,000</td><td>0,1</td></thdescriptio<></thdescription<></thdescription<>	SC 7	Poj	Tables and ba	anners		1,000	1,000	1,000	1,000	0,000	0,000	0,1
Pro Dime significance tests 0.000<	<u> </u>	Poj 20	Probability cal	culator		0,000	0,000	1,000	0,000	0,000	0,000	1,1
11 Pop and STATISTICA BASIC 0.000<	S	Poi	Other significa	ince tests		0,000	0,000	1,000	0,000	0,000	0,000	1,1
11 Pop an Quick Basic Status 0.000	<u> 10</u>	Poj				0,000	0,000	0,000	0,000	0,000	0,000	0,1
11 Pop Command Language (SCL) 1.000 1.000 1.000 0.000	a 11	Poj Bas	STATISTICA	BASIC		0,000	0,000	0,000	0,000	0,000	0,000	1,
14 Peg 1.000 0.00	12	Poj	Command Lar	nguage (SCL)		1,000	1,000	1,000	1,000	0,000	0,000	0,
14 Pop 200000 0,0000<	13	Poj				1,000	0,000	0,000	0,000	0,000	0,000	1,
16 Pop2 0.000 0.0	14	Poj 🔏	QUICK Basic 5	tats		1,000	0,000	0,000	0,000	0,000	0,000	0,
16 Pop2 0.000 0.000 1.000 1.000 1.000 0.000 0.000 0.000 1.000 1.000 1.000 0.0	15	Poj ដ	Uther Statistic	\$		1,000	0,000	0,000	0,000	0,000	0,000	0,
11 Pop3 0.000 0.0	16	Pop2	0,000	0,000	0,000	1,000	1,000	1,000	1,000	0,000	0,000	1,
218 Pop3 0.000 0.	17	Pop2	0,000	0,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	1,
1 Pop3 1,000 1,000 0,000 1,000 0,00	2 18	Pop3	0,000	0,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,
10 20 Pop3 1,000 1,000 0,000<	V 19	Pop3	1,000	1,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,
1 Pop3 1,000 1,000 0,00	fb 20	Pop3	1,000	1,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,
22 Pop3 1,000 1,000 0,0	PA 21	Pop3	1,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,
1 Pop3 1,000 1,000 1,000 1,000 1,000 0,00	22	Pop3	1,000	1,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,
24 Pop3 1,000 1,000 0,000 1,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,000 1,000 1,000 1,000 1,000 1,000 0,0	B 23	Pop3	1,000	1,000	0,000	1,000	1,000	1,000	0,000	0,000	0,000	0,
25 Pop3 1,000 1,000 1,000 1,000 1,000 0,000 0,000 0,000 1,000 1,000 1,000 0,0	24	Pop3	1,000	1,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	1,
Pop3 0.000 0.000 1.000 1.000 0.000	25	Pop3	1,000	1,000	0,000	1,000	1,000	1,000	0,000	0,000	0,000	1,
2 22 Pop3 0,000 0,000 1,000 1,000 1,000 0,000 0,000 0,000 1,000 2 28 Pop3 0,000 0,000 0,000 1,000 1,000 0,000 0,000 1,000 1 1 000 1,000 1,000 1,000 0,000 0,000 1,000	26	Pop3	1,000	1,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,
■ 28 Pop3 0,000 0,000 0,000 1,000 1,000 1,000 0,000 0,000 0,000 1,	2 27	Pop3	0,000	0,000	0,000	1,000	1,000	1,000	1,000	0,000	0,000	1,1
	28	Pop3	0,000	0,000	0,000	1,000	1,000	1,000	0,000	0,000	0,000	1,1
			0.000	· · · · ·	· · · · ·		· · · · ·			0 000	0.000	

Рис. 28.

Elle Ed	HLA Basic lit ⊻iew <u>A</u> na	Statistics an Ilysis Graphs	nd Tables - s Options \ Image: Marco	Data: GILL ⊻indow Help		an 12001	ا (نصفا ال	F.0].00][.	o ABC	ল	-181 -181
			Vals	Lases			1 ALL	.00 +.0 ×	•: 123 f	<u>411</u>	
VALU-	- 1	2	2	4	c	6	7	•		10	11
19e	COD POP	VAR2	VAR3	VAR4	VAR5	VAR6	VAR7	VARS	VAR9	VAR10	NEUVAR:
3	Pop1	0,000	0,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,0
4	Pop1	1,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	1,000	0,0
5	Pop1	1,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,0
6	Pop1	1,000	1,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,0
<u>66</u> 7	Pop1	1,000	1,000	0,000	1,000	1,000	1,000	1,000	0,000	0,000	0,0
8	Pop1	1 mil Des	crintive Sta	tistics and f	orrelations	hu Groups (F	(reakdown)		2 × 00	0,000	1,0
9	Pop1	0				of chorps (c			00	0,000	1,0
4 📈 10	Pop1	0						1	00	0,000	0,0
11	Pop2	1 <u>A</u> naly	sis: Detail	ed analysis	of individua	l tables	-	<u> </u>	K 00	0,000	1,0
12	Pop2	0						Cano	00	0,000	0,0
13	Pop2	1 🛃	<u>¥</u> ariables						 00	0,000	1,0
14	Pop2	1 6	rouning: Ci					SELECT S	B w 00	0,000	0,0
I 15	Pop2	Dependent: VAR2-NEW/VAR54								0,000	0,0
16	Pop2	q						I_Weight	ed 00	0,000	1,0
17	Pop2	이 많음	Codes for	grouping v	ariables:	none		DE	° 00	0,000	1,0
18	Pop3	9 = 0			()40			Court C	0.0	0,000	0,0
V 19	Pop3	1 1 14	isewise (list	wise) deletid	on or MD			IOW-IC	N-1 00	0,000	0,0
db 20	Pop3	1				14			00	0,000	0,0
PA 21	Pop3	1,000	1,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,0
22	Pop3	1,000	1,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,0
B 23	Pop3	1,000	1,000	0,000	1,000	1,000	1,000	0,000	0,000	0,000	0,0
24	Pop3	1,000	1,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	1,0
25	Pop3	1,000	1,000	0,000	1,000	1,000	1,000	0,000	0,000	0,000	1,0
26	Pop3	1,000	1,000	0,000	1,000	0,000	0,000	0,000	0,000	0,000	0,0
2 27	Pop3	0,000	0,000	0,000	1,000	1,000	1,000	1,000	0,000	0,000	1,0
28	Pop3	0,000	0,000	0,000	1,000	1,000	1,000	0,000	0,000	0,000	1,0
ÎÎ.					1	0 000		0 000			Î.
For help, pre-	ss F1							Output:	ILE S	el:OFF Weig	ht:OFF
					-	The successed to an			1000		

Рис. 29.

Клацнути по кнопці **ОК**, внаслідок чого відкриється нове віконце (рис. 30). В ньому необхідно клацнути по кнопці "**Summary table of means**" ("**Таблиця із середніми арифметичними**"). Тоді відкриється таблиця із

середніми значеннями по всіх 53 стовпчиках для кожної із п'яти генотипових груп (рис. 31).

👹 Descriptive Statistics and Correlations I	oy Groups - Results 🛛 ? 🗙
DEPENDENT: 53 variables: VAR2 VAR3 VAR7 VAR5	VAR4 VAR5 VAR6 VAR9 VAR10 NEWVAR11 .
GROUPING: 1-COD_POP (5): Popl F	op2 Pop3 Pop4
Summary table of means Statis Summary table of means Nu Detailed two-way tables Statis Display long variable names Yar Display long value labels Means	tics her of observations ns Adard deviations iances dian and guartiles
M <u>arginal means</u>	Categorized <u>b</u> ox & whisker plot
Analysis of Variance	Categorized histograms
Post- <u>h</u> oc comparisons of means	Categorized normal prob. plots
Evene Brown-Forsythe (HOV)	Interaction plots
within-group correlations Options	<u>C</u>ategorized scatterplots
Beorder factors in table	Plot of means vs. std. devs

Рис. 30.

<u>C</u> ontinue	N=120 (No :	missing dat	ta in dep.	var. list)		
COD_POP	VAR2	VAR3	VAR4	VAR5	VAR6	VAR7
Pop1	,600000	,600000	0,000000	,400000	,100000	, 300000
Pop2	,428571	,428571	0,000000	,857143	,285714	,285714
Pop3	,464286	,464286	0,000000	,750000	,357143	,357143
Pop4	0,000000	,678571	,071429	,142857	,178571	,250000
Pop5	0,000000	,446809	0,000000	,361702	,212766	,361702
All Grps	,183333	,516667	,016667	,433333	,233333	,325000

Для того, щоб ці значення використовувати в подальшому, необхідно їх зберегти як дані. Для цього обрати наступний режим роботи із файлами – "Saves as Data" ("Зберегти як дані") (рис. 32).

e <u>E</u> dit <u>V</u> iew <u>A</u> nalysis <u>G</u> raphs <u>O</u> ptions <u>W</u> indow <u>H</u> elp	
Open S <u>c</u> rollsheet Op <u>e</u> n Other	
Save	
Save As	
Sa <u>v</u> e As Data	VAR6 VAR7 VAR8 VAR9
Save As <u>H</u> TML	00 0,000 0,000 0,000 0,00
Print	a in den var list)

Рис. 32.

На запитання програми щодо ім'я нового файлу із середніми арифметичними ми надамо наступне: Gill_immuno_means.sta (рис. 33).

Save Scrollsheet As			? ×
👖апка: 🔁 Gill_DATA	-		
🧾 gil123	🧱 Gill_immuno_means	🛄 gill-ı	means-std-1
🛄 Gill_immuno_1	🧰 Gill_immuno_means-std	🛄 Tyn	nofeev_Immunoge
Gill_immuno_1_matrix1	iiii gill-1		
Gill_immuno_1_matrix2	🛄 gill-fact-scores1		
Gill_immuno_1_matrix3	🧱 gill-lact-curv-dissert		
Gill_immuno_1_matrix4	🧱 gill-means_1		
			<u>•</u>
Имя файла: Gill_immuno_	_means		Со <u>х</u> ранить
<u>Т</u> ип файла: Data Files (*	.sta)	•	Отмена
Workbook:		-	

Рис. 33.

Тепер відкриємо той файл із середніми по групах, який ми зберегли. Він потребує ще деяких змін. По-перше, необхідно видалити останню строчку таблиці (All Grps), що містить середні арифметичні значення по всім строчкам (тобто, для 120 тварин). Для цього використовуємо опцію "Строки" (Cases) та обираємо для останньої строчки функцію "Видалити" (Delete) (рис. 34).

🏭 S '	TATISTICA: B	asic Statistics a	nd Tables - [[)ata: GILL_1~6	STA 53v * 6c			
E E	jile <u>E</u> dit <u>V</u> iew	<u>Analysis</u>	s <u>O</u> ptions <u>W</u>	indow <u>H</u> elp				
,1830	3333333333334	4 📑 🖬	Vars	Cases ABC		┝╾┥╺┝┥ ALL	(+.0 .00 ×=	? 🔒 🚮
		Summary Tab	le of Mea	<u>A</u> dd <u>l_i~</u>	1.sta)			
	VALUES	1 VAR2	2 VAR3	Move	4 VAR5	5 VAR6	6 VAR7	7 VAR8
	Pop1	,600000	,600000	Delete 0000	,400000	,100000	, 300000	,100000
<u></u>	Pop2	,428571	,428571	Names 0000	,857143	,285714	,285714	,285714
	Pop3	,464286	,464286	booo	,750000	,357143	,357143	,250000
	Pop4	0,000000	,678571	,071429	,142857	,178571	,250000	0,000000
<u>66</u>	Pop5	0,000000	,446809	0,000000	,361702	,212766	,361702	0,000000
ठॅढ	All Grps	,183333	,516667	,016667	, 433333	, 233333	,325000	,083333
ES.								
٩Ž								
	I							

Рис. 34.

необхілно стандартизувати дані, По-друге, замінивши ïχ нормованими відхиленнями (z-мітками). Це дозволяє використовувати такі стандартизовані дані для процесу кластеризації, оскільки вони у такому випадку мають однаковий розподіл (із середнім арифметичним, що дорівнює нулю, та середнім квадратичним відхилення, що дорівнює одиниці). Для цього, виділимо всі стовпчики таблиці із середніми, клацнемо по ім'ям будь-якого стовпчика правою кнопкою миші (ПКМ). В меню, що відкриється оберемо опцію "Fill/Standardize Block" (Стандартизація Блоку даних), й оберемо процедуру "Standardize Column" (Стандартизація Стовпчиків) (рис. 35). Цей файл необхідно також зберегти окремо; назвемо його Gill immuno means std.sta (рис. 36).

Ele Edit Yiew Analysis Graphs Options Window Help .6 Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_i~1.sta) Image: Summary Table of Means (gill_
NUMERIC VALUES Summary Table of Means (gill_i~1.sta) 1 2 3 4 5 6 7 VALUES 1 2 3 4 5 6 7 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 Pop1 .600000 Custom Graphs 857143 .285714 .285714 .285714 Pop2 .464286 Quick Basic Stats 857143 .285714 .285714 .285714 Pop4 0.000000 Warable Specs 142857 .178571 .250000 0.00000 Pop5 0.000000 151 Tegt Values 361702 .212766 .361702 0.00000
VACES 1 2 3 4 5 6 7 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 Pop1 ,600000 CS Quick Stats Graphs 400000 ,100000 ,300000 ,1000 Pop2 ,428571 Custom Graphs 857143 ,285714 ,285714 ,285714 ,285714 ,285714 ,25000 Pop4 0,000000 Clyatable Specs 142857 ,178571 ,250000 0,00000 Pop5 0,000000 ftg Tegt Values 361702 ,212766 ,361702 0,00000
Pop1 ,600000 Pop2 ,428571 Quick Stats Graphs 400000 ,100000 ,300000 ,1000 Pop2 ,428571 Custom Graphs 857143 ,285714 ,25000 ,000000 ,
Pop3 .464286 750000 .357143 .357143 .2500 Pop4 0.000000 III Variable Specs 142857 .178571 .250000 0.00000 Pop5 0.000000 III Variable Specs 361702 .212766 .361702 0.00000
Pop4 0,000000 Warable Specs 142857 ,178571 ,250000 0,0000 Pop5 0,000000 ffs Text Values 361702 ,212766 ,361702 0,0000
4 6 -
X=? Recalculate
Image: Model (s) Image: Model (s) Image: Model (s) Image: Model (s) Image: Model (s) Image: Model (s)
Case <u>Name(s)</u>

1 2 VAR2 VAR3 076685 .694 464352865 591921	3 VAR4 842 -,447214 234 -,447214	4 VAR5 -,347616 -	5 VAR6 1,283539	6 VAR7 -,227761	7 VAR8 -,200500	8 VAR9 720204
076685 ,694 464352 -,865 591921 -:40	842 -,447214 234 -,447214	-,347616 -	1,283539	-,227761	-,200500	720204
464352 -,865 591921 - 540	234 -,447214	1 205144				-,720304
591921 540		1,200144	, 595786	-,525943	1,171345	-,728384
	010 (1701)	011012	1 210602	04 40 70	,907529	1,194876
06647 Save File /	45		and another	<u> </u>	-,939186	-,728384
06647 Папка: 🛛	🔁 Gill_DATA	* (t 🛃 🖻	* 🔳 .	-,939186	,990274
gil123		iill_immuno_means	📕 gill-me	eans-std-1		
Gill_imn	nuno_1	iill_immuno_means-st	🚽 🛄 Tymo	feev_Immunoge		
🛄 Gill_imn	nuno_1_matrix1 🛛 🏢 g	ill-1				
📰 Gill_imn	nuno_1_matrix2 🛛 🏢 g	ill-fact-scores1				
🔣 Gill_imn	nuno_1_matrix3 🛛 🛄 g	ill-lact-curv-dissert				
🛄 Gill_imn	nuno_1_matrix4 🛛 🕅 g	ill-means_1				
•				- F		
Must make			r	Construction 1		
Имя фаиле	a. julii_immuno_mean	5-500	1	Сохранить		
Tun maŭ na	(Data Files (* sta)		-	Отмена		
Thu days						
Workbook:			•			
	-		- Contraction of the local division of the l			
0						
	06647	06647	06647	06647 Папка: Gill_DATA Image: Constraint of the second se	06647 Папка: Gill_DATA Image: Constraint of the second sec	06647 Imarka: Gill_DATA Imarka: -, 939186 Imarka: Gill_immuno_means Gill_immuno_means Gill_immunoge Imarka: Gill_immuno_means Imarka Imarka: Data Files (*.sta) Imarka Imarka: Imarka Imarka Imarka: Im

Рис. 36.

Зараз, після проведення необхідних підготовчих дій, файл із даними вже придатний для його кластерізації. Для цього відкриємо модуль "Кластерний аналіз" (Cluster Analysis) та оберемо метод кластеризації "Joining (tree clustering)" (Побудова дерев кластеризації). У вікні, що відкриється зробимо наступні установки (рис. 37) та клацнемо по кнопці **ОК**.

STATISTICA: Cluster Analysis File Edit View Analysis Graphs Options Window Help	<u>_8 ×</u>
1.07668477171526 E Vars Cases ABC C ++ + C .00 -00 ×=?	
Image: State Citcle (17.51A 53x - 5c) Image: State Citcle (17.51A 53x - 5c) <td< td=""><td>DFF</td></td<>	DFF
🤹 🕅 yek 🛛 🖄 💓 🔿 🥞 🖉 🥔 🖓 🖃 🔛 🔛 🔡 👔 🗍 💯 Micr 🔄 STA 🎼 ST 🔀 EN 🚳 🌾 😂 🎼 🐼 🗲	17:51

Рис. 37.

Вікно, що відкриється, дає змогу візуалізувати результати кластерного аналізу у вигляді дендрограми (дерева кластеризації) у вертикальному (Vertical icicle plot) чи горизонтальному (Horizontal hierarchical tree plot) вигляді (рис. 38). Можна просто клацнути по кнопці **ОК** та отримати дендрограму (рис. 39). Але нам необхідно не стільки дендрограма, скільки матриця евклідових відстаней між окремими популяціями. Її ми будемо використовувати у процедурі багатовимірного неметричного шкалювання. Для її отримання ми клацнемо по кнопці "Save distance matrix" (рис. 38).

📇 Joining Results	? 🗵
Number of variables: 53	
Number of cases: 5	
Joining of cases	
Missing data were casewise deleted	
Amalgamation (joining) rule: Unweighted pair	r-group centroid
Distance metric is: Euclidean distances (nor	n-standardized)
Horizontal hierarchical tree plot	
Martinal inicle plat	Cancel

Рис. 39.

Збережемо цю матрицю під іменем Gill_immuno_1_matrix_pop.sta. Тепер відкриємо модуль "Багатовимірне неметричне шкалювання" (Multidimensional Scaling"(рис. 40). А в цьому модулі відкриємо файл із матрицею.

Рис. 40.

Зробимо наступні установки у вікні, що відкриється (рис. 41) та клацнемо по кнопці **ОК**.

🚆 Multidimensional Scaling	<u>? ×</u>
ALL	<u> Ш ок</u>
<u>N</u> umber of dimensions:	Cancel
Starting configuration:	Standard G-L
<u>E</u> psilon:	0,
<u>M</u> inimum number of iterations:	6
Maximum number of iterations:	50 🗧 🗁 Open <u>D</u> ata

Рис. 41.

Почнеться ітераційна процедура пошуку оптимального розміщення об'єктів у новому просторі (рис. 42). Коли вона закінчиться необхідно клацнути по кнопці **ОК** для того, щоб отримати результати (рис. 43).

Paramet	er Estima	ation				<u>? ×</u>
iter. s: t:	[dim cosin	=4] step	D-star raw stress	D-star alienation	D-hat raw stress	d-hat stress
0 0			,0264024	,0324933		
1 1		,200	,0118653	,0217931		
12	,978	,731	,0025585	,0101064		
13	-,480	,264	,0005945	,0048783		
14	,914	,633	,0001797	,0026789		
15	-,410	,267	0,000000	0,000000		
0 *			0.000000	0.000000	0.000000	0.000000

<pre>5 vars. from file D:\A_lîÊĂ~1\GILL_I~1\GILL_D~1\GILL_I~8.S Number of dimensions: 4 Start config.: (Guttman-Lingoes) Last iteration computed: 5; Best iteration: 0 D-star: Raw stress = 0,000000; Alienation = 0,000000 D-hat: Raw stress = 0,000000; Stress = 0,000000 D-hat: Raw stress = 0,000000; Stress = 0,000000 Email Einal configuration @ Graph final configuration, 2D D-hat values @ Graph final configuration, 3D Cance D-star values @ Graph D-hat vs. distances D-star values @ Graph D-hat vs. distances</pre>	
Einal configuration Image: Graph final configuration, 2D Image: D-hat values Image: Graph final configuration, 3D Image: D-star values Image: Graph D-hat vs. distances	
D-hat values Graph final configuration, 3D Canal D-star values Image: Graph D-hat vs. distances Image: Graph D-hat vs. distances	<u>O</u> K
D-star values Graph D-hat vs. distances	icel
Distance matrix Graph D-star vs. distances	
Summary Shepard diagram	
Sa <u>v</u> e final configuration	

Рис. 43.

Для візуалізації об'єктів (популяцій) у новому багатовимірному просторі необхідно клацнути по кнопці "Graph final configuration, 2D" (Двовимірний графік фінальної конфігурації) й ми отримуємо шуканий графік (рис. 44).

Fi			
	nal Configuration, dime	ansion 1 vs. dimension 2	
1,0	POP1		
0,8			
0.6			
2 0,4			

Рис. 44.

Після внесення необхідних змін та формування, цей графік вже набуває закінченого вигляду (рис. 45).

Рис. 45.

Q-аналіз також проводиться на вихідній базі даних (файл Gill_immuno_1.sta), але має деякі відмінності. Відкриємо цей файл у модулі "Кластерний аналіз" та зробимо необхідні установки (рис. 46).

📇 Cluster Analysis: Joining (Tre	e Clustering) ? 🗙
VAR2-NEW	WAR54
 Input: Raw data	▼ Cancel
<u>C</u> luster: Variables (columns)	_
<u>Amalgamation (linkage) rule:</u>	Unweighted pair-group centroid
Dis <u>t</u> ance measure:	Percent disagreement
	p: 2 🖌 <u>r</u> 2 📈
Missing <u>d</u> ata:	

Рис. 46.

Матрицю із відстанями між 53 еритроцитарними антигенами збережемо під іменем Gill_immuno_1_matrix_antig.sta. Далі відкриємо цю матрицю в модулі "Багатовимірне неметричне шкалювання", зробимо необхідні установки (рис. 47) та клацнемо кнопку **ОК**.

😁 Multidimensional Scaling	? ×
▶ Variables: ALL	<u>— ок</u>
<u>N</u> umber of dimensions:	9 Cancel
<u>Starting configuration:</u>	Standard G-L
<u>E</u> psilon:	0.
<u>M</u> inimum number of iterations:	6
M <u>a</u> ximum number of iterations:	50 🚔 🗁 Open <u>D</u> ata

Рис. 47.

Після ітераційної процедури пошуку оптимальної конфігурації ми можемо візуалізувати отриману топологію об'єктів, побудувавши двовимірний графік (рис. 48).

Рис. 48.

Після внесення необхідних змін та формування, цей графік вже набуває закінченого вигляду (рис. 49).

СПИСОК ВИКОРИСТАНОЇ ТА РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ

1. Вдовиченко Ю., Жарук П. Генетичні ресурси овець в Україні. *Вісник аграрної науки*. 2019. Т. 97, № 5. С. 38-44.

2. Войтенко С., Сидоренко О. Збереження генофонду та підвищення продуктивності худоби білоголової української породи. *Вісник аграрної науки*. 2021. Т. 99, № 2. С. 41–51.

3. Войтенко С. Л., Порхун М. Г., Сидоренко О. В., Ільницька Т. Є. Генетичні ресурси сільськогосподарських тварин України на початку

третього тисячоліття. *Розведення і генетика тварин*. 2019. Вип. 58. С. 110-119.

4. Гладій М. В., Полупан Ю. П., Ковтун С. І., Кузебний С. В., Вишневський Л. В., Копилов К. В., Щербак О. В. Наукові та організаційні аспекти розведення, генетики, біотехнології та збереження генофонду у тваринництві. *Розведення і генетика тварин*. 2018. Вип. 56. С. 5-14.

5. Дзіцюк В. В., Типило Х. Т., Гузеватий О. Є. Цитогенетика сільськогосподарських і домашніх тварин : монографія. Київ : Аграрна наука, 2021. 127 с.

6. Кругляк О. В. Генетичні ресурси молочного скотарства України. *Економіка АПК*. 2018. № 1. С. 33-39.

7. Методологія оцінки генотипу тварин за молекулярно-генетичними маркерами у тваринництві України : монографія / К. В. Копилов, О. М. Жукорський, К. В. Копилова та ін.; за наук. ред. акад. НААН М. В. Гладія. Київ : Аграрна наука, 2015. 208 с.

8. Почукалін А. Є., Прийма С. В., Різун В. Забезпеченість генетичними ресурсами скотарства України. Вісник Сумського національного аграрного університету. Серія «Тваринництво». 2022. № 1. С. 59-64.

9. Селекційно-генетичний моніторинг у конярстві / за ред. І. В. Ткачової. Київ : Аграрна наука, 2018. 204 с.

10. Сідашова С. О., Ковтун С. І. Генетичні ресурси племінних молочних стад: селекційний потенціал кращих корів та ефективність їх відтворення. *Розведення і генетика тварин.* 2018. Вип. 55. С. 209-219.

11. Супрун I. Генетичні ресурси рисистого конярства в Україні. Вісник Сумського національного аграрного університету. Серія «Тваринництво». 2020. № 3. С. 67-76.

12. Хмельничий Л. М., Павленко Ю. М. Генетичні маркери в селекції та збереженні генофонду бурої худоби Сумського регіону. Вісник Сумського національного аграрного університету. Серія «Тваринництво». 2021. № 3. С. 3-6.

13. The Genetics of the Pig / Edited by M. Rothschild, A. Ruvinsky. CABI Publishing, 2011. 520 p.

Навчальне видання

Генетичні ресурси сільськогосподарських тварин

Методичні рекомендації

Укладач: Крамаренко Олександр Сергійович

Формат 60 × 84/16. Ум. друк. арк. 2,0. Тираж 10 прим. Зам. №523.

Надруковано у видавничому відділі Миколаївського національного аграрного університету 54020, м. Миколаїв, вул. Георгія Гонгадзе, 9

Свідоцтво суб'єкта видавничої справи ДК № 4490 від 20.02.2013 р.