
Eastern-European Journal of Enterprise Technologies ISSN-L 1729-3774; E-ISSN 1729-4061	 1/7 ( 133 ) 2025

14

1. Introduction

In modern tanker, railroad, aviation, as well as rocket 
and space technology, and in other branches of the national 
economy, structures are actively used that have the form of 
elastic compartments with a liquid or liquids with different 
densities. The instability of oscillations of elastic compart-
ments with a liquid leads to the destruction of structures. To 
establish stability conditions, it is necessary to solve a very 
complex hydroelasticity problem and currently there are only 
individual solutions to this problem. One of the most effective 
approaches to simplifying this complex hydroelastic problem 
and deriving analytical solutions is an approach based on 
considering plane oscillations of elastic rectangular plates 
and a liquid. This makes it possible to estimate with accura-
cy reasonable for practice the critical values of mechanical 
parameters at which instability of joint oscillations of plates 
and liquid occurs. Various types of oscillations of liquids and 
plates during the transportation of substances of different 
densities in tanks affect the stability of the system, which 

can lead to a violation of the stability of the system, and sub-
sequently to destruction.

Therefore, it is a relevant task to study the influence of 
combined oscillations of elastic plates and a liquid on the fre-
quency spectrum and on the stability of oscillations of a me-
chanical system. At the same time, one of the most effective 
approaches to simplifying this complex hydroelastic problem 
and obtaining analytical solutions is the approach based on 
considering plane oscillations of elastic rectangular plates 
and a liquid. This makes it possible to investigate mechanical 
regularities with accuracy reasonable for practice and to es-
tablish stability conditions convenient for calculations.

2. Literature review and problem statement

The problem of normal oscillations of a membrane on the 
free surface of a liquid in a long rectangular parallelepiped 
was considered in [1, 2]. The studies were carried out on 
the basis of the Lagrange–Euler approach, but the stability 
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The object of this study is two thin elastic isotropic 
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allelepiped with an ideal fluid. The first plate is the upper 
base of the rectangular parallelepiped, and the second one 
horizontally separates ideal fluids that have different den-
sities. The subject of the study is the normal joint plane 
vibrations of elastic rectangular plates and an incom-
pressible fluid and the conditions that enable the stability 
of these vibrations.

In the linear statement, the frequency spectrum of nor-
mal plane vibrations of two elastic isotropic plates in an 
infinitely long rectangular parallelepiped with an ideal 
incompressible fluid has been investigated. The frequen-
cy equation of joint vibrations of the plates and the ideal 
fluid was reduced to the form of an eighth-order deter-
minant for arbitrary cases of fixing the contours of the 
plates. The case of clamped contours of the plates and the 
case of rebirth of the plates into membranes is analyzed. 
Based on analytical studies of infinite series in the tran-
scendental frequency equation, exact stability conditions 
for the combined oscillations of plates and liquid were 
established. It has been shown that instability of oscilla-
tions of plates and liquid occurs when a heavier liquid 
is above a less heavy liquid. The derived stability condi-
tions for symmetric and asymmetric oscillations of plates 
and liquid do not depend on the elastic parameters of the 
upper plate, the mass characteristics of the plates and 
the depths of filling liquids. The analytically obtained 
exact stability conditions for the combined oscillations 
of the plate and liquid generalize the previously obtained 
approximate stability conditions for this problem. The 
numerical calculations of the frequency equation con-
firmed the analytical studies of the stability conditions. 
The results could be used in the calculation and design of 
mechanical objects related to the storage and transporta-
tion of liquid cargo
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issues were not considered. In papers [3, 4], exact stability 
conditions for joint oscillations of a plate and a liquid in 
an infinitely long rectangular parallelepiped with a rigid 
bottom [3] and an elastic bottom [4] were established. These 
stability conditions were obtained on the basis of analytical 
solutions of the roots of an infinite series. For limited sizes of 
elastic containers with a liquid, only numerical approaches 
are available in the literature [5, 6]. A fairly large number of 
works have tackled problems describing the natural oscil-
lations of an ideal liquid in a straight circular cylinder with 
elastic bases, in particular [7, 8]. In paper [7], oscillations of 
an ideal liquid in a circular cylindrical tank with elastic bases 
in the form of circular plates are considered. An analytical 
method based on the Fourier-Bessel series expansion and the 
Rayleigh-Ritz method is proposed. Work [8] reports a study 
on the frequency equations of asymmetric and symmetric 
natural oscillations of an ideal two-layer fluid in a rigid 
circular cylindrical tank with an elastic top and bottom in 
the form of clamped circular plates. Using the example of a 
homogeneous fluid with a free surface and an elastic bottom 
in the form of a membrane, the frequency spectrum of joint 
oscillations was analyzed analytically and numerically, but 
the issues of stability of the joint oscillations of the plate and 
fluid were not considered.

In paper [9], a solution to the hydroelastic problem of 
free oscillations of a thin isotropic plate horizontally sep-
arating ideal incompressible fluids of different densities 
in a rigid cylindrical tank of arbitrary cross-section was 
constructed. To solve the complicated inhomogeneous bi-
harmonic equation, the fundamental system of solutions of 
the biharmonic equation (FSR) and the eigenforms of oscil-
lations of an ideal fluid in a cylindrical cavity were applied. 
Using the example of a clamped plate, the frequency equa-
tion was simplified by decomposing the homogeneous bi-
harmonic equation into two harmonic equations and using 
Green’s formula for the Laplace operator. It was shown that 
in this case the frequency equation does not depend on FSR, 
which significantly simplified this equation, since the FSR 
depends on the unknown frequency. It should also be noted 
that the derived equation has a single form for the cases of 
a straight circular cylinder and a rectangular channel and 
for some cases coincides with the previously built equations; 
however, the issues of stability of the combined oscillations 
of the plate and the liquid were not considered in [7–9]. In 
[10], the problem of oscillations of a solid body with a liquid 
under the action of a spring force (Sretensky problem) and 
the problem of oscillations of a physical pendulum are gen-
eralized to the case of a multilayer ideal liquid separated by 
elastic plates. From the positive definiteness of the potential 
energy (Sretensky problem) and the changed potential en-
ergy (physical pendulum), the conditions for the stability 
of the equilibrium position are established. More detailed 
studies were carried out for a cylindrical cavity of arbitrary 
cross section. It is shown that in the Sretensky problem, for 
the stability of the equilibrium position, it is necessary and 
sufficient that the equilibrium position of elastic plates and 
liquid in a stationary solid body be stable, and it is sufficient 
that the heavier liquid be below the less heavy one. In the 
problem of oscillations of a physical pendulum, for the sta-
bility of the equilibrium position, it is also necessary that 
the equilibrium position of elastic rectangular plates and 
incompressible liquid in a stationary solid body be stable. It 
was proved that the preliminary tension of the plates makes 
it possible to stabilize the unstable equilibrium position of 

the physical pendulum. It should be noted that in that work, 
the conditions for the stability of oscillations of a solid body, 
plates, and liquid were established on the condition of posi-
tive definiteness of potential energy.

Of the latest works on this topic, paper [11] should be 
noted, which considers a more complex hydroelastic problem 
of spatial oscillations of a liquid in an elastic rectangular 
parallelepiped.

From our review of the literature it follows that the issues of 
stability of vibrations of rectangular plates in an infinitely long 
rectangular parallelepiped with an ideal fluid have not been re-
solved since to obtain exact stability conditions it was necessary 
to involve new analytical methods for studying stability.

3. The aim and objectives of the study

The aim of our work is to analytically solve the plane 
hydroponic problem of oscillations and stability of a thin iso-
tropic rectangular plate that separates ideal incompressible 
fluids of different densities in a rigid rectangular channel 
with an elastic upper plate. For this purpose, it is necessary 
to derive the frequency equation, simplify it, and analytically 
establish the stability conditions. This will make it possible 
to take into account the influence of the elastic and mass 
characteristics of the plates and the fluid on the frequency 
spectrum and stability of joint oscillations.

To achieve the goal, the following tasks were set:
– to derive the integrated-differential equations of joint 

oscillations of rectangular plates and an ideal fluid;
– to construct the frequency equation of normal joint os-

cillations of rectangular;
– plates and an ideal fluid for general cases of fixing the 

contours of the plates and simplify this frequency equation 
for the case of clamped contours of the plates and membranes;

– based on analytical studies of infinite series in the 
transcendental frequency equation, establish exact stability 
conditions for coupled oscillations of rectangular plates or 
membranes and an ideal fluid, and to verify the resulting 
stability conditions, perform numerical calculations of the 
frequency equation for the case of a membrane.

4. The study materials and methods

The object of our study is two thin elastic isotropic rect-
angular plates in an infinitely long rectangular parallelepiped 
with an ideal fluid. The mechanical system consists of two thin 
elastic isotropic rectangular plates in an infinite rectangular 
parallelepiped. The first plate is the upper base of the rectangu-
lar parallelepiped, and the second one horizontally separates 
ideal fluids of different densities ρi (i=1, 2). The long rectan-
gular parallelepiped has width b, where (b=2a). The plates are 
considered isotropic, with constant bending stiffness Di and 
with forces Ti in the middle surface (i=1, 2). The index i=1 will 
correspond to the upper plate, and i=2 to the inner one (Fig. 1). 
The contours of the plates are arbitrarily fixed. The liquid 
located above the density ρ1 occupies space in the channel to 
depth h1, and the ideal liquid located below to depth h2.

The Oxyz coordinate system is located in such a way that 
the Oxy plane is on the undisturbed median surface of the 
inner plate, the Oy axis is directed along an infinitely long 
rectangular parallelepiped, and the Oz axis is opposite to the 
gravitational acceleration vector g



 (Fig. 1).
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The oscillations of the plates and the liquid are considered 
in a linear statement, the joint oscillations of the plates and 
the liquid are considered continuous, and the motion of the 
liquids is considered potential. The forms of the plate deflec-
tion are given as the sum of the fundamental solutions to the 
homogeneous equation for each plate and a partial solution to 
the inhomogeneous equation in the form of an expansion in 
terms of the eigenfunctions of oscillations of an ideal liquid 
in a rectangular channel. A new method was proposed for the 
study, which is associated with the analytical determination 
of the critical values of parameters at which the frequency of 
joint oscillations approaches zero.

5. Results of research on the stability of vibrations of 
rectangular plates in an infinitely long rectangular 

parallelepiped

5. 1. Basic integrated-differential equations of joint 
vibrations of rectangular plates and an ideal fluid

The equations of plane vibrations of elastic rectangular 
plates and an ideal fluid will take the form [3, 4]:
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where k0i=ρ0i·h0i; Wi(x, t), ρ0i, h0i – normal deflection, densi-
ty, and thickness of the i-th plate; Фi(x,y,t) – velocity potential 
of the i-th fluid (i=1, 2); Рi(x, z, t) – hydrodynamic pressure 
in the i-th fluid, and Р0(x, t) – pressure above the upper base; 
zi=h1 at i=1 and 0 at i=2; ijpL – differential operators of the 
boundary conditions of fixing the plate on the contour γj.

Taking into account the Cauchy-Lagrange integral, equa-
tion (1) can be written as follows:
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at ,iz z=  ( )1,2 ,i =

where Δρi=ρi−ρi−1 (ρ0=0); Qi is an arbitrary function of time; 
δi1 is the Kronecker symbol.

Let the functions Φi(x,z,t) take the form:
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where the functions ( ) ( )cos ,n nx k x aψ = +  and their corre-
sponding eigenvalues kn=πn/2a.

Expression (9) satisfies equation (2) and boundary con-
dition (7).

From (9), (3), (4) and the orthogonality of the functions ψn, 
the following linear system with respect to unknowns Ain, 
Bin (i=1, 2) follows:
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System (10) can be solved as follows:
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Here:
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Taking into account ratios (9), (11), (12), equation (8) will 
take the form:
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where:

Fig. 1. Cross-section of an infinite rectangular parallelepiped 
with an elastic upper and rigid lower base, containing fluids 

of different densities separated by an elastic plate
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1 1sinh ,n nb = ρ κ  1 1,coth coth ,in i in i i na − −= ρ κ +ρ κ

1 1 1coth ,n na = ρ κ  2 1 1 2 2coth coth .n n n na a= = ρ κ +ρ κ

Thus, the joint oscillations of elastic rectangular plates 
and an ideal fluid are found from the system of integrat-
ed-differential equations (12) to (14), boundary conditions (5), 
conditions for the conservation of the volume of an incom-
pressible fluid (6) and given initial conditions.

5. 2. Normal frequencies of combined vibrations of 
rectangular plates and an ideal fluid

Assume:
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From (12) to (15), boundary conditions (5), and condi-
tion (6), it follows:
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The solution to equation (16) is represented as a linear com-
bination of four fundamental solutions 0
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to the corresponding homogeneous equation:
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and partial solution to inhomogeneous equation (16) [3–5, 11–14]:
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where ρi=Ti/Di, qi=(gΔρi−k0iω2)/Di, 0 ,ikA  inC  and w0i are 
unknown constants.

Taking into account the representation of (21) and rela-
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Taking into account (21) and (22), the system of linear 
equations for determining w1n and w2n follows:
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Expression (21) for the shape of the deflection of plates 
w1 and w2, taking into account (18), (22)m and (23), will take 
the form:
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Thus, the deflection forms of the plates w1 and w2 will be 
written as follows:
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where δil is the Kronecker symbol.
In the case of membranes (Di=0) in expressions (27) it is 

necessary to assume k=1,2.
From boundary conditions (19) it follows:
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Here:
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From the system of linear equations (28), the frequency equa-
tion of the joint eigenoscillations of the plates and the liquid is:
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In the following, the main attention will be paid to the 
case of pinched contours since it is most often encountered 
in practice. In this case, the coefficients of the determinant of 
the frequency equation (30) take the following form:
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Let the functions 0
ikw  be represented as a series over a 

complete and orthogonal system of eigenfunctions ψn [3], 
then the coefficients (31) will be written as follows:
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For a membrane (Di=0), expression (30) will take the form:
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and the coefficients (31) will be written as follows: 
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By performing transformations with the rows and col-
umns of the determinant of equation (30), as was done 
in [3, 4], this equation can be written in a single form for 
symmetric and asymmetric frequencies:
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Here: 
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When the upper plate becomes absolutely solid (T1=∞), 
equation (35) will take the form:
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Thus, the frequency equation of joint normal vibrations 
of elastic rectangular plates and an ideal fluid (30) can be 
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simplified and written in a single form for symmetric and 
asymmetric frequencies (35). When the upper plate is reborn 
into a solid one, the equation takes the form of (36).

5. 3. Determining stability conditions of joint vi-
brations of elastic clamped rectangular plates and an 
ideal fluid

In works [3, 4] it was shown that to find critical values 
of mechanical parameters at which loss of stability occurs 
in the corresponding frequency equation it is sufficient to 
assume ω2=0. At ω2=0 equation (35) breaks down into two 
equations:
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and equation (36) coincides with equation (38).
Since 1 0,nd >  equation (37) has no solutions. Equa-

tion (38) at Δρ=ρ2−ρ1≥0 will also have no solutions. Accord-
ingly, instability can occur only in the case when Δρ<0.

Thus, the stability conditions of equations (35) coincide 
with the stability conditions of equation (36).

In the case of a membrane (D2=0) and Δρ<0, equa-
tion (38) in dimensionless form takes the form:
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Taking into account (40) (n=2m−1), the solution to equa-
tion (38) takes the form a=2l, and the critical value of tension 
T2=g(ρ1−ρ2)a2/π2l2, which at l=1 gives the following stability 
condition:
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Taking into account (41) (n=2m), the first root of equa-
tion (38) takes the form πa/2=4.493409458, from which the 
stability condition follows:
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When D2≠0, equation (38) can be rewritten as follows:
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representation:
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Taking into account (45) (n=2m−1), the first root of equa-
tion (38) takes the form πa/2=3.926602312, from which the 
following stability condition follows:

( ) 4
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Taking into account (46) (n=2m), the first root of equa-
tion (38) takes the form πa/2=5.2676575303, from which the 
stability condition follows:
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Let Δρ=0 (ρ1=ρ2). In this case, equation (38) will take 
the form:
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where x=πβ/2.
Taking into account (50) (n=2m−1), the first root of equa-

tion (49) takes the form x=4.49341, from which the following 
stability condition follows:

2
2 0.04953 .D Ta>  				     (52)

Taking into account (51) (n=2m), the first root of equa-
tion (49) takes the form x=5.76346, from which the stability 
condition follows:

2
2 0.03011 .D Ta>  				     (53)

Thus, the stability conditions at 1 2ρ ≠ ρ  for the membrane 
and the plate take the form (42), (43), and (47), (48), respec-
tively, and for ρ1=ρ2 the stability conditions for the plate take 
the form of (52), (53).
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To verify the established stability conditions, we shall 
perform numerical calculations of equation (36) for a mem-
brane (D2=0), where 2 2 ,b gΩ =ω  2

2 ,T T g b= ρ  0 02 2 ,k k b= ρ  
ρ1ρ12=ρ1/ρ2, Hi=hi/b, b=2a.

Fig. 2, 3 show the plots of dependence of the square of the 
first dimensionless asymmetric frequency on the dimension-
less density value ρ12 at 0.1T =  – Fig. 2, and at 1.0T =  – Fig. 3 
for 2 1, 1,20.n m m= − =  In all figures H1=H2=1, and the values 

0 0k =  correspond to the upper plot, 0 0.5k =  – the middle 
plot and 0 1.0k =  – the lower plot. It should be noted that the 
plots for symmetric and asymmetric frequencies do not differ 
qualitatively and, as a rule, the values of even frequencies 
are approximately five times greater than the corresponding 
values for odd frequencies.

The above plots of dependence of the square of the first 
dimensionless frequency on ρ12 (Fig. 2, 3) confirm our an-
alytical studies, from which it followed that the oscillation 
of the membrane and the liquid may be unstable when the 
heavier liquid is above the lighter liquid (ρ12>1).

6. Discussion of results based on investigating the 
stability of vibrations of rectangular plates with an 

ideal fluid

Traditionally, for the study of complex transcendental 
characteristic equations, a finite number of series terms 
remain, and the stability conditions are derived from the 
conditions of positivity of the roots of the frequency equa-
tion [1]. According to this method, increasing the series terms 
makes it impossible to conduct further analytical studies of 
the conditions of positivity of the roots due to the signifi-
cant complexity of the resulting characteristic equations. In 
contrast to conventional approaches, the method proposed 
in [3, 4] has been further refined in our work. According 
to it, to find the critical values of mechanical parameters at 
which stability is lost, it is sufficient to assume ω2=0 in the 
corresponding frequency equation. Based on the derived 
frequency equations (30), (33), (35), (36) and the proposed 
method, analytical studies of infinite series in equation (38) 
were carried out and the stability conditions of the combined 
vibrations of the plates and fluid were established. It is shown 
that the stability of symmetric and asymmetric vibrations for 
the membrane and the plate take the form of (42), (43), (47), 
and (48), respectively, and at ρ1=ρ2 the stability conditions 
for the plate take the form of (52), (53). It should be noted that 
these inequalities do not depend on the elastic properties of 
the upper membrane or plate, the mass characteristics of the 
membranes and plates and the depths of filling of liquids. The 
given approach in the linear statement partially resolves the 
more complex problem of the stability of nonlinear combined 
vibrations of the layer and the liquid. Our analytical studies 
on the problem of plane vibrations give a qualitative assess-
ment of the stability of combined vibrations of plates in an 
ideal liquid in the case of spatial vibrations.

To verify the established stability conditions, numerical 
calculations of equation (36) were carried out, which con-
firmed the analytical studies on stability conditions. The pro-
posed approach makes it possible to derive accurate values 
of mechanical parameters at which instability will occur, in 
contrast to conventional approaches, since an increase in the 
number of series members will lead to the impossibility of 
specifying the stability conditions.

The limitations of the proposed method include the linear 
statement of the problem and the assumption of the continu-
ity of plate and fluid oscillations.

Our study is also limited to the consideration of plane 
oscillations, which gives a limited opportunity to use them in 
spatial oscillations of plates and fluid.

Further research prospects involve spatially compatible 
oscillations of plates and an ideal fluid.

7. Conclusions

1. We have constructed and investigated frequency equa-
tions of free oscillations of two isotropic elastic rectangular 
plates in an infinitely long rectangular parallelepiped with an 
incompressible ideal fluid. The first plate is the upper base of 
the rectangular parallelepiped, and the second one separates 
the ideal incompressible fluids having different densities. 
The contours of the plates may be arbitrarily fixed. The com-
bined oscillations of the elastic rectangular plates and the in-
compressible fluid are reduced to a system of integrated-dif-

Fig. 2. Dependence of the square of the first dimensionless 

frequency on ρ12 at 0.1T =

Fig. 3. Dependence of the square of the first dimensionless 

frequency on ρ12 at 1T =
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ferential equations, and, accordingly, the forms of deflection 
of the rectangular plates are represented as the sum of the 
fundamental solutions to the homogeneous equation for each 
plate and a partial solution to the inhomogeneous equation.

2. Two separate cases have been investigated by analyt-
ical methods: when the contours of the plates are clamped, 
and when the plates are transformed into membranes. It 
is shown that this problem has an analytical solution and 
a discrete spectrum of eigenvalues, and the corresponding 
eigenfunctions, as a rule, form a complete and orthogonal 
system of functions.

3. Based on analytical studies of infinite series in the 
transcendental frequency equation, stability conditions for 
combined oscillations of rectangular plates and an ideal in-
compressible fluid have been established. It was shown that 
instability of oscillations of plates and fluid occurs when a 
heavier fluid is above a less heavy fluid. The resulting stabil-
ity conditions for symmetric and asymmetric oscillations of 
elastic membranes, ideal fluid, and plates do not depend on 
the elastic parameters of the upper plate, the mass character-
istics of the plates, and the depths of filling of liquids. To veri-
fy the established stability conditions, numerical calculations 
of the frequency equation were carried out for the case of a 
membrane and plots of dependence of the square of the first 
dimensionless asymmetric frequency on the dimensionless 
density value were constructed, which confirmed the ana-
lytical studies on stability conditions. To verify the resulting 
stability conditions, numerical calculations of the frequency 
equation were carried out for the case of a membrane and 
plots of dependence of the square of the first dimensionless 
asymmetric frequency on the dimensionless density value 
were built. From the above plots it follows that with increas-
ing density of the upper liquid the frequencies decrease and 
may approach zero, which will lead to instability of oscilla-

tions. Numerical calculations has confirmed the analytical 
studies on stability conditions.
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