ВИКОРИСТАННЯ ПЕРШОПРИНЦИПНИХ РОЗРАХУНКІВ ДЛЯ ОПИСУ ТЕТРАГОНАЛЬНИХ СТРУКТУР

Поживатенко В.В., канд. фіз.-мат. наук, Миколаївський національний аграрний університет https://orcid.org/0000-0002-9256-721X

Анотація. Проведено першопринципні розрахунки структурних властивостей напівметаличної сполуки InBi. Досліджені способи покращення відповідності з експериментом.

Ключові слова: напівметали, InBi, тетрагональна структура.

Напівметалічні сполуки привертають увагу дослідників своїми властивосями, які притаманні вже більше мірою галузі нанофізики. Поверхня Фермі, яка в металах може мати досить складну форму і важко описується теоретично, стає в них більш схожою на напівпровідникову, тобто заповнені і незаповнені зони хоча ще і не відокремлені повністю, але перетинаються всього в декількох точках цієї зони. Саме в цих точках можуть утворюватись зони Дірака [1], що приводить до можливих прикладень цих сполук в нанофізиці.

Проблема дослідження цих сполук залишається тою ж самою, що у металів, так як більшість розрахункових схем базується на теорії функціоналу густини (ТФГ) [2], в якій може значно занижуватись та спотворюватись заборонена зона, результати першопринципних розрахунків можуть не досягати бажаної точності.

В нашій попередній роботі [3], проведено першопринципні розрахунки структурних характеристик напівметалічної сполуки ІпВі. Ця сполука кристалізується при нормальних умовах в тетрагональній ґратці *B10* (рис. 1) з параметрами a = 5,000 Å, c = 4,773 Å, $\gamma = 0,9546$, z = 0,393 [4]. Тут $\gamma = c/a$ – параметр тетрагональності, z – міжшарова відстань в одиницях ґратки.

Рисунок 1 – Структура сполуки ІпВі

Результати першопринципних розрахунків (у тому числі в роботах інших авторів) приводять до значення $\gamma = 1,03$, що помітно викривляє елементарну комірку сполуки. Для виправлення цих результатів скористуємось підходом, описаним в [5], де пропонується використовувати невелику кількість експериментальної інформації, а саме експериментальний об'єм, для уточнення першопринципних розрахунків на основі ТФГ [2]. У згаданій роботі розглядається залежна від об'єму поправка до обмінно-кореляційної енергії, яка не врахована в рамках ТФГ. Далі будемо вважати, що ця поправка виникає як неврахований внесок в енергію зонної структури E_{bs} , враховуючи складність підсумовування за станами поблизу досить складної поверхні Фермі в InBi. Таку поправку можна описати в першому порядку точності для ряду Тейлора в околі рівноважного об'єму у вигляді:

$$E = E^{DFT} + \Delta E_{bs}(V_x) + \frac{\partial \Delta E_{bs}(V_x)}{\partial V}(V - V_x), \qquad (1)$$

де E^{DFT} – енергія, отримана в першопринципних розрахунках з використанням відповідної апроксимації ТФГ. Позиції атомів і вектори решітки у випадку тетрагональної структури *B10* далі зведемо до набору з трьох обраних параметрів $X \equiv (V, \gamma, z)$. Також $V_x \in$ деяким значущим об'ємом, в [5] це експериментальний об'єм, але в цій роботі використовується рівноважний об'єм V_0 , отриманий в першопринципних розрахунках. Рівноважні параметри γ_0 і z_0 , які відповідають рівноважному об'єму, також можуть бути використані.

Так як множник $P_{bs} = \frac{\partial \Delta E_{bs}(V_x)}{\partial V}$ має сенс деякого додаткового тиску, а ΔE_{bs} відповідає жорсткому зсуву рівняння стану і далі не використовується, можна записати (1) у вигляді:

$$E = E^{DFT} + P_{bs} (V - V_0),$$
 (2)
де P_{bs} – деякий параметр.

Враховуючи, що тетрагональність γ демонструє найбільше відхилення, тобто структурні, а не об'ємні властивості спотворюються найбільше в першопринципних розрахунках, розглянемо також інші можливі варіанти. Розгляд як об'ємних, так і структурних ефектів дає три змінні, які описують структуру *B10*. Тоді загальне рівняння для підгонки з урахуванням цих трьох параметрів має вигляд:

$$E = E^{DFT} + \frac{\partial E}{\partial V}(V - V_0) + \frac{\partial E}{\partial \gamma}(\gamma - \gamma_0) + \frac{\partial E}{\partial z}(z - z_0) =$$

= $E^{DFT} + P_{bs}(V - V_0) + E_{\gamma}(\gamma - \gamma_0) + E_z(z - z_0),$ (3)

де $E_{\gamma} = \frac{\partial E(\gamma_0)}{\partial \gamma}$ і $E_z = \frac{\partial E(z\gamma_0)}{\partial z}$ є деякими коефіцієнтами з розмірністю енергії, а рівняння (1) є частинним випадком рівняння (3), яке враховує лише об'ємні ефекти, як у [5]. Зокрема, якщо нас цікавить вплив внесків, які безпосередньо враховують відхилення параметра γ від рівноваги, то маємо

$$E = E^{DFT}(\gamma) + E_{\gamma} (\gamma - \gamma_0).$$
⁽⁴⁾

Результати розрахунків за рівняннями (1) і (4) наведено в табл. 1. Аналіз табл. 1 дозволяє зробити висновок, що можна покращити результати першопринципних розрахунків, використовуючи обидві ці можливості. Слід

зазначити, що підгонка лише з одним відхиленням від експериментального параметра z не зменшує значення параметра γ розумно (тобто γ залишається більшим за 1). Проте в табл. 1 також наведено варіант можливої підгонки за структурними параметрами γ і z, відповідно до виразу

$$E = E^{DFT}(\gamma, z) + E_{\gamma} (\gamma - \gamma_0) + E_z (z - z_0), \qquad (5)$$

в якому покращено значення всіх структурних параметрів.

Щоб пояснити доцільність і ефективність різних варіантів підгонки в складній некубічній гратці InBi, розглянемо результати розрахунків, наведені на рисунках 2 та 3. Оскільки з рівняння стану «енергія — об'єм» знаходять рівноважний об'єм, а у випадку решітки *B10* йому відповідають деякі значення γ і z, то розглянемо залежність повної енергії від цих параметрів.

Рисунок 2 – Залежність енергії від параметрів ґратки

Рисунок 3 – Залежність об'єму від параметрів ґратки

Рис. 2 (а) показує залежність повної енергії $E(\gamma)$ при фіксованому значенні z = 0,386. Слід зазначити, що саме при цьому значенні z рівноважне значення (E_0 , V_0) досягається при p = 0. Рис. 2 (b) дає залежність E_{min} (z), де E_{min} – значення мінімальної повної енергії, досягнутої при фіксованому z. Рис. 3(а) показує залежність V_{min} від γ , тобто об'єм V_{min} , що відповідає конкретному значенню γ , при якому досягається мінімальне значення E_{min} , при деякому фіксованому z (див. Рис. 3 (b) для відповідності). Рис. 3 (b) показує залежність V_{min} від z, тобто об'єму, що відповідає мінімальній енергії E_{min} при фіксованому значенні z.

Метод підгонки	P_{bs} , Ry/Å ³	E_{γ} , Ry	Ez, Ry	<i>a</i> , Å	<i>c</i> , Å	<i>V</i> , Å ³	γ	Z.
V	0,008	_	_	4,9995	4,7752	119,3556	0,9551	0,388
γ	-	0,050	_	5,0038	4,7622	119,2349	0,9517	0,389
γiz	-	0,041	0,023	4,9919	4,7703	118,8716	0,9556	0,393

Результати розрахунків

Список використаних джерел

1. Okawa, K., Kanou, M., Namiki, H., & Sasagawa, T. (2018). Extremely large magnetoresistance induced by hidden three-dimensional Dirac bands in nonmagnetic semimetal InBi. *Phys. Rev. Materials*, 2 (12), 124201. doi:10.1103/PhysRev Materials.2.124201

2. Kohn, W., & Sham, L.J. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. *Phys. Rev.*, 140 (4A), 1133 – 1138. doi: 10.1103/PhysRev. 140. A1133.

3. Pozhyvatenko, V.V. (2023). Study of the structural an electronic properstes oft semimetallic InBi: first-principles calculation of compound with pecularities of the electronic structure. *Condens. Matter Phys.*, 26 (4), 43601. doi: 10.5488/CMP. 26.43601.

4. Binnie, W.P. (1956). The structural crystallography of indium bismuthide. *Acta Crystallogr.*, 9 (8), 686 – 687. doi: 10.1107/S0365110X56001893.

5. van de Walle, A., & Ceder, G. (1999). Correcting overbinding in local-densityapproximation calculations. *Phys. Rev. B*, 59 (23), 14992. doi: 10.1103/PhysRevB. 59.14992.

Ahotaцia. First-principles calculations of the structural properties of the semimetallic compound InBi have been performed. Methods for improving the agreement with experiment have been investigated.

Ключові слова: semimetals, InBi, tetragonal structure.