

4. Malafeev S. I., Zakharov A. V., Safronenkov Y. A. A new series of asynchronous frequency-controlled motors for mining excavators. *Russian electrical engineering*. 2019. Vol. 90, no. 4. P. 299–303.

Abstract. The paper considers the problem of using outdated electrical equipment in stationary feed dispensers, which does not meet the modern requirements of livestock production processes. The analysis showed that traditional conveyor designs have increased weight-cost indicators due to the use of gearboxes and massive drive units. It is proposed to improve the electromechanical part of the installation by using an asynchronous motor with an external rotor and frequency control, which allows you to abandon the gearbox and reduce the metal consumption of the structure. The developed electric drive circuit provides increased reliability, improved volt-ampere characteristics of the engine, and reduced specific and technological material consumption. The implementation of a frequency control system and a programmable logic controller allows you to optimize the operation of the feed dispenser, reduce energy consumption by 43.8% and increase the efficiency of the technological process control system by 25%.

Keywords: feed dispenser, conveyor, electric drive, asynchronous motor with external rotor, frequency control, programmable logic controller, energy efficiency, material consumption, control system optimization.

Науковий керівник:

Мардзявко В.А.,

асистент

кафедри електроенергетики, електротехніки та електромеханіки

Миколаївський національний аграрний університет

UDC. 62-1

CONSTRUCTION OF THE DYNAMIC ELECTRICAL DRIVE SYSTEM IN THE PH-AD SYSTEM FORMATHEMATICAL DESCRIPTION OF THE ELECTRO-MECHANICAL SYSTEM OF THE BELT CONVEYOR

Tishchenko Dmytro

student of higher education, specialty 141 Power engineering, electrical engineering and electromechanics

Mykolaiv National Agrarian University

Mykolaiv, Ukraine

Abstract. The results of simulation of the dynamic system of the electric drive demonstrate indicators of transient processes that correspond to reality. The obtained results can be used for further development and modernization of control systems of electromechanical systems in industrial processes aimed at energy saving and limitation of dynamic loads.

Keywords: *electromechanical system, belt conveyor, mathematical model, multi-mass system, electric drive, IF-AD system.*

To analyze the dynamic properties of the electromechanical system of the belt conveyor, it is necessary to mathematically describe this system. Depending on the tasks, mathematical models can have a different structure [1]. A multi-mass mathematical model can be used to limit dynamic loads in the kinematic chains of the electromechanical system of the conveyor installation. Control can have parallel or serial coordinate correction.

The basis for these models is a mathematical description of the electromechanical system of a belt conveyor with an open control system. Modern adjustable electric drives of conveyors with asynchronous motors use frequency converters with autonomous voltage or current inverters [2].

Mathematical models of frequency-regulated electric drives are complex and not very suitable for solving problems of energy saving and limiting dynamic loads. Therefore, static and energy properties of the electromechanical system of the conveyor installation are important for these tasks, however, to solve the given task, the mathematical model can be simplified, ignoring high-frequency electromagnetic oscillations.

Construction and research of the dynamic system of the electric drive in the IF-AD system for the mathematical description of the electromechanical system of the belt conveyor.

Consider the dynamic structure of the IF-AD system, as a basis for the mathematical description of the control function, you can take the schematic diagram of the IF-AD system [3]:

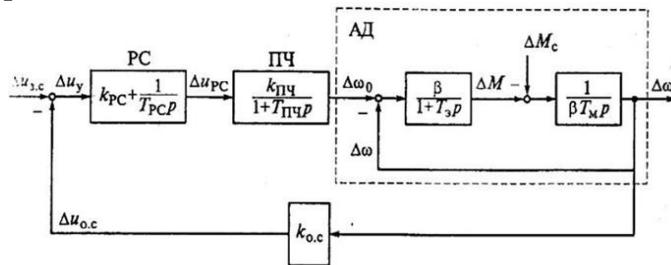


Fig. 1 – The structural diagram of the closed feedback system of the IF-AD by speed is presented: RS - speed regulator, IF - frequency converter, AD - asynchronous motor

It should be noted that fig. 1 presents a linear structural diagram of a closed loop feedback system of the IF-AD by speed. This is a structural diagram of a closed loop feedback system with PT-AD speed using the MATLAB program shown in fig. 2.

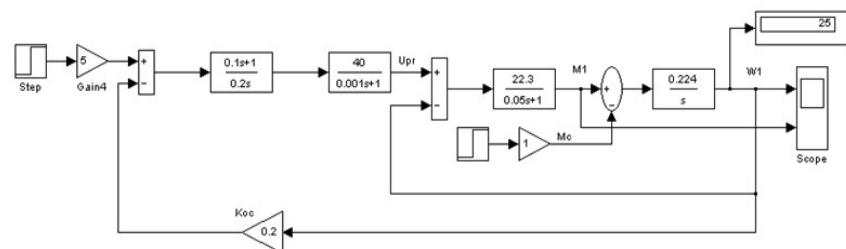


Fig. 2 – Structural diagram of the closed system of the IF-AD

For modeling, the critical value and coefficient of the closed-loop IF-AD system were selected [4].

The curves of the speed regulation process and the influence of $U(z.s.) = 1(t)$ on the moment of the closed system of the AC-AD asynchronous motor with a single lift of the control body at the system input are shown in Fig. 3 [5].

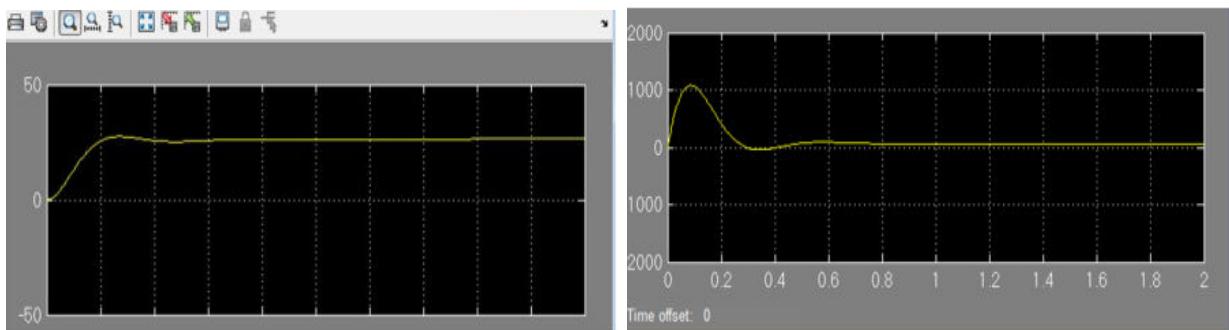


Fig. 3 – Curves of the transient process of speed and moment in the closed system of the IF-AD asynchronous motor

The upper curve of the transient process is considered to be the transient process of the speed of the induction motor, and the lower curve is considered to be the transient process of the electromagnetic torque of the motor. As shown in fig. 3, the speed adjustment is equal to 30%. The parameters on the schematic diagram are the parameters of the 4A112M4 U3 asynchronous motor.

The result of the performed work was the construction and research of the dynamic system of the electric drive in the IF-AD system on the basis of mathematical description of the control function of a single-motor asynchronous motor. As a result of the simulation, we obtained indicators of transient processes of AD robot that correspond to reality. Thus, the use of this model will give us the opportunity to mathematically describe the electromechanical system of the belt conveyor, for example, for its modernization.

That is, the results of the work can be used for further development and improvement of control systems in industrial processes using electromechanical systems.

References

1. Автоматизований електропривод стрічкових конвеєрів. *4ua.co.ua*. URL: http://4ua.co.ua/manufacure/qazac69b5d43a88421216c27_1.html.
2. Хілов В. С. Дослідження інформаційно-аналітичних властивостей електромеханічної системи при нелінійній корекції за завданням потужності. *Науковий вісник Національного гірничого університету*. 2014. № 4. С. 114–120.
3. Афанасьев I. Підвищення ефективності застосування системи автоматизованого електропривода вильоту стріли порталного крана : Дипломна робота. Вінниця : Вінн. нац. аграр. ун-т, 2023. 86 с.
4. Increasing of the Elevator Noria Efficiency / I. Biliuk et al. 2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES),

Анотація. Результати моделювання динамічної системи електроприводу демонструють показники переходних процесів, що відповідають реальності. Отримані результати можуть бути використані для подальших розробок та модернізації систем керування електромеханічними системами в промислових процесах, спрямованих на енергозбереження та обмеження динамічних навантажень.

Ключові слова: електромеханічна система, стрічковий конвеєр, математична модель, багатомасова система, електропривід, система ПЧ-АД.

Supervisor:
Vakhonina L.V.,

*Ph.D. physical mate. Sciences, associate professor
department of electric power engineering, electrical engineering and
electromechanics
Mykolaiv National Agrarian University*

УДК: 621.3.042:621.313.333

СУЧАСНИЙ СТАН ЗАСТОСУВАННЯ ТА УДОСКОНАЛЕННЯ ЕЛЕКТРОДВИГУНІВ З ЗОВНІШНІМ РОТОРОМ І АКСІАЛЬНИМ ЗАЗОРОМ

Андрій Ставинський

канд. техн. наук, доцент кафедри електроенергетики, електротехніки та електромеханіки

Миколаївський національний аграрний університет
м. Миколаїв, Україна

Анотація. На основі огляду інформаційних джерел визначена інтенсифікація застосування в рухомих транспортних об'єктах спеціальних асинхронних двигунів з зовнішнім ротором і аксіальним зазором. Показана можливість удосконалення таких двигунів на основі заміни плоских і спірально-циліндричних шарів сталі магнітопроводів на конусно-плоскосні і конусно-циліндричні структури.

Ключові слова: транспортні об'єкти, спеціальні електродвигуни, зовнішній ротор, аксіальний зазор, удосконалення.

Одним із напрямків удосконалення низки технічних об'єктів і технологічного обладнання є створення електромеханізмів при застосуванні електричних машин з підвищеною конструктивною пристосованістю до