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Movement of a material particle on an inclined plane all the points
of which describe circles in oscillatory motion in the same plane

Differential equations of material particle movement on an inclined rough plane, which performs oscillatory
motion in such a way that its every point describes a circle in the same plane, have been deduced.
Peculiarities of relative particle movement on a plane depending on the angle of its inclination to the horizon
have been investigated. The equations have been solved using numerical methods. Relative velocities have
been found and particle motion trajectories have been constructed. Kinematic characteristics of relative
particle movement depending on the angle of plane inclination, angular velocity, the coefficient of particle
friction on a plane and the radius of circular motion of plane points have been determined.
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Introduction

An inclined plane is a general purpose construction element of numerous agricultural machines [1]. In the
course of processing technological material moves on it. Particle movement on a horizontal plane that performs
oscillatory straight-line or circulatory motion is the best investigated. As for an inclined plane, investigations
are mainly conducted for its rectilinear reciprocating horizontal oscillations in the direction of plane inclination
or in the transverse direction [1]. If there are non-rectilinear plane oscillations, when all its points describe a
circle and the plane itself is inclined, the movement of technological material changes significantly.

In addition to the fundamental monograph [1] that covers rectilinear reciprocating oscillations, there are
works focused on non-rectilinear plane oscillations. Academician P.M. Zaika [2]| investigated the movement of
a spherical particle on a horizontal plane, which performs translational oscillations in a circle and other [3, 7.
In fact, the problem of material particle movement on a plane that performs circular oscillatory motion was
first solved in geometric interpretation [8], generalized and applied to the cases of elliptical vibrations by
LI Blekhman [9]. Investigations of material particle movement on a rough horizontal plane, that performs
horizontal translational oscillations on various curves, are covered in the papers [10-19].

Material and research methods

Let us locate a plane in such a way that it is inclined to the horizon at an angle 8 (Fig. 1). A particle
performs relative movement on an inclined plane, where there are plane coordinates ouv arranged in such a
way that ou axis in directed in the line of the greatest inclination. The inclined plane together with plane
coordinates perform oscillations in such a way that all the points of the plane describe circles of radius R in
the same plane (Fig. 1,a, these circles are presented only in the apexes of the rectangle, which limits the plane).
Absolute particle motion is considered relative to the fixed coordinate system Ozyz, where Oy axis coincides
with ov axis, and there is the angle 8 between the inclined plane ouv and the coordinate horizontal plane Oxy.
The origin of the moving coordinate system (point o) describes a circle as well. Fig. 1 presents the two systems
at the time when their coordinate origins coincide.

In order to develop differential equations of particle movement, it is necessary to use its absolute trajectory
in the fixed coordinates Ozyz. The absolute trajectory of a particle is written as the sum of the corresponding
components in the translational motion and in the relative motion:

T =T+ Ty Y=Y+ Yr; z=z+ 2, (1)

where z; = z4(t); ye = ye(t); 2¢ = 2¢(t) is a trajectory of translational motion as a function of time;
Tp = 2, (t); Yr = yr(t); 2 = 2-(t) is a trajectory of relative motion as a fuction of time.
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Figure 1. Consideration of particle movement on an inclined plane with all its points describing
circles at oscillations in the same plane: a) mutual arrangement of the moving coordinate system
ouv and the fixed coordinate system Ozyz at the initial moment, when their coordinate
origins coincide; b) particle position on a plane, when it is projected into a line

Every point of an inclined plane, including the origin of the moving coordinate system ouw, describes a circle
of radius R. In the projections on the axes of the fixed coordinate system, relative motion of a plane is presented
by the following parametric equations:

x; = Rcos 8 coswt; Yy = Rsinwt; zy = —Rsin f coswt, (2)

where w is angular velocity of rotation of every point of a plane.

A particle slides on an inclined plane and its sliding trajectory in the moving coordinate system ouv is
written as a function of time ¢: u = u(t); v = v(¢). In the projections on the axes of the fixed coordinate system,
relative particle movement is described by the following parametric equations:

T, = ucos f3; Yr = U; zr = —usin 3. (3)
By summing translational and relative motion applying the formula (1), we obtain:
x = Rcos 8 coswt + ucos 3; y = Rsinwt + v; z = —Rsin S coswt — usin S. (4)

The dependences u = u(t); v = v(t), that describe the trajectory of relative motion (particle sliding on
an inclined plane), are the unknown functions that must be determined. By differentiating the equations (4)
with respect to the time ¢, the projections of absolute particle velocity on the fixed coordinate system Ozyz are

obtained:
7' = —Rwcos Bsinwt +u' cos 3;

Yy = Rwcoswt +v'; (5)
7' = Rwsinwt — usin 3.

Differentiation of the expressions (5) allows for projecting absolute acceleration:

2" = —Rw? cos Bcoswt + u' cos 3;
y" = —Rw?sinwt +v"; (6)
2" = Rw?sin B coswt — u” sin .

Let us deduce a motion equation in the form of mw = F, where m is particle mass, w is absolute

acceleration vector, F is the resultant vector of the forces applied to a particle. Such forces include weight

force mg (g = 9,81m/s?), the response N of an inclined plane and friction force fN at particle sliding on a

plane (f is friction coefficient). All the forces must be projected onto the axes of the fixed coordinate system.
Weight force is directed downwards, thus, its projections are written as:

{0; 0 —mg}.
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The response N of a plane is perpendicular to it (Fig. 1,b) and has the following projections:
{Nsing; 0; N cos 5} .

Since friction force is directed at a tangent to the trajectory of relative particle motion in the opposite
direction, let us find the projections of the tangent vector. They are determined by the first derivatives of the
equations (3):

x, = u cos f3; Yy =0'; 2, = —u'sin 3. (7)

The geometric sum of the components (7) provides the velocity of particle sliding on the surface of a cylinder
in relative motion:

/2+y/2+z/2_ u/2_~_,U/2. (8)

The unit tangent vector in the projections on the axes of the moving coordinate system Ozyz is obtained
from dividing the projections (7) by the vector value (8):

{ u’ cos 3 v u/ sin 3 }
—_— —_— —_— 5.
u/2 + ,U/2 u/2 + U’2 /u/2 + ,U/2

Let us break down the vector equation mw = F in the projections on the axes of the fixed coordinate
system, taking into account that the friction force fN is directed along the unit vector (9) oppositely to it:

9)

ma’ = Nsin f — fN—4cosd

my//:_fN\/%W; (10)
n_ ' sin B
mz" = —mg + Ncosf + fN 7= .

Let us insert other derivatives (projections of absolute acceleration) from (6) into the equation (10) and we
obtain the system of three equations:

m (—Rw? cos Bcoswt + u cos 3) = Nsin g — fN\}L%§

m (_RWQ sin wt + U”) = _fNW, (11)
m (Rw?sin B coswt — v sin B) = —mg-i—NCOSﬁ-i-fN%

The system (11) includes three unknown functions: N = N(t), u = u(t) and v = v(t). By solving it with
respect to N, v and v”, we obtain a very simple expression for N:

N =mgcosf. (12)

It follows from (12) that the force of N surface pressure on a particle is a steady-state one. It is possible

to obtain tentative verification that the mass m in the equations reduces, if it is substituted in (12) and (10).

After the rearrangement, the dependences u” and v” take the following forms:
" o__ 2 . _ u cosfB .

= Rw* coswt + gsin S fgim ; (13)

= Rw?sinwt — fg\/”u,czi"%é2 .
The system (13) cannot be integrated in the analytical form. It must be solved using numerical methods.
Analytical solution can be obtained for a special case when f = 0, that is for an absolutely smooth plane:

u:ﬂsmBJrcltchoswt (14)
v = cot — Rsinwt

where cq, ¢y is integration constants.
In order to find the absolute trajectory of a particle, it is necessary to insert the expressions (14) into the
parametric equations (4):
T = g—fsinﬁcosﬁ—kqtcosﬁ;
Yy = cat; (15)

z=— g; sin® B — citsin 5.

The equations (15) describe a parabola that is located in an inclined plane.
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Results

The research is conducted for a case, when 5 = 0, that is to say, in the case of a horizontal plane, the
absolute trajectory transforms into a straight line. This is predictable, since, if there is no friction, a particle
does not response to plane oscillations moves in absolute motion as if it is fixed. The relative trajectory, which
is the result of particle sliding on a plane, takes the correspondent curvilinear form near the absolute trajectory.
If 8 =0 and f # 0, numerical integration of the equations (13) shows that the trajectory of particle relative
motion is a circle. A particle slides in it after its motion is stabilized and it is possible to find the analytical
solution of the differential equation system [10-12] for this case. The form of the relative trajectory during the
transient period, that is after a particle gets onto a plane and up to its motion stabilization, depends on the
reference conditions of integration: the value of velocity and its direction at the moment of getting onto a plane.

Let us consider that a particle falls vertically and meets the plane at a right angle. Let us assume that at
the moment of meeting a plane its absolute velocity is equal to zero. Since a plane performs oscillatory motion
at this moment, there is particle sliding on a plane. The value and the direction of sliding velocity (that is to
say, the velocity of relative motion) is equal to the analogical values of the translation motion of a plane at the
point of particle entering but the velocity is oppositely directed. The point of particle entering depends on the
time ty. Since every plane point describes a circle of radius R, a particle enters a certain point of this circle,
which is determined by the radius vector angle of rotation about the angle ¢y = wty. Having inserted this value
into the equation (2), it is possible to determine the point of particle entering a plane in the fixed coordinate
system. The velocity value is determined by differentiating the equations (2). For example, y, = Rw coswt =
= Rw coswty = Rw cos pg. Thus, v'(pg) = —y; = —Rw cos ¢y. Similarly, u'(¢g) = —z; = Rwsin pg. These data
are the reference conditions of integration. Fig. 2,a presents the trajectories of relative particle motion when
it enters a plane after 45° rotation of this plane around a circle in translational motion. Fig. 2,b presents the
graph of change in sliding velocity, which is determined from the formula (8). Thus, the trajectory of relative
particle motion after its motion is stabilized is a circle and, after this, the relative velocity becomes constant.
The paper [7-9] provides the dependence of the circle radius p, is the trajectory of relative particle motion after

its motion is stabilized — on R, f and w:
2
pr=R 1—(‘709) . (16)
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Figure 2. Kinematic characteristics of relative motion at w=6 s~*, R=0,1 m, f=0,3: a) relative trajectories
originate from the circle of plane translational motion after 45°; b) graph of relative velocity V;. change

The (16) shows that at the set values of R and f, there is a critical value of the angular velocity w, at which
relative motion is possible. If the angular velocity of plane oscillation is lower than the critical one, sliding is
not possible: a particle «sticks» on a plane. If the angular velocity w increases, the kinematic characteristics of
a particle change: the radius ps of a circle of relative motion increases and reaches the one of a translational
motion circle (Fig. 3,a) and the time of relative velocity stabilization increases (Fig. 3,b).

Let us determine the patterns of particle movement on an inclined plane that oscillates. The investigations
show that, if there is a plane inclination beginning from the horizontal position, the trajectories of relative
motion transform from circles into curves that are similar to cycloids (extended, regular, curtailed), here, their
transformations take place with respect to the inclination of a plane in the order enumerated in the parentheses.
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Figure 3. Kinematic characteristics of relative motion at w = 10s~!, R=0,1 m, f=0,3:
a) relative trajectories originate from the circle of plane translational motion after 90°;
b) graph of relative velocity V;. change

Fig. 4 presents the correspondent graphs of trajectories and velocities for w = 65! and w = 105! at the
plane inclination being 8 = 2°. Similar to a horizontal plane, with the increase of the angular velocity w, the
value of relative oscillations increases, here, their propagation direction does not coincide with the line of the
greatest inclination, however, with the increase of the angular velocity it increasingly reaches it. As for the
initial conditions, if there are high angles of plane inclination, it is necessary to take into account the velocity of
particle motion in the vertical direction downwards at the moment of its entering a plane (V5). Relative sliding
velocity is increased by the component Vysing, that is u'(pg) = Rwsin g — Vg sin 3. This component plays its
role only at the beginning of movement. Fig. 4 presents the graphs after motion stabilization. Particle relative
velocity changes similar to a sinusoid, here, its maximum and minimum values remain constant. It is obvious
that the oscillatory motion of a particle in the direction close to the line of the greatest inclination takes place
uniformly, that is, the propagation velocity of sliding is constant. If the angle of plane inclination increases, for
example, to B = 20°, the pattern of oscillations changes (Fig. 5). The trajectory becomes similar to a curtailed
cycloid with a pitch that increases (Fig. 5,a) and relative velocity at the equal amplitude changes in such a
way that its extremum values increase in linear fashion (Fig. 5,b). It means that oscillations have accelerated
propagation.

. 1 2 3 4 5 6
a b
Figure 4. Kinematic characteristics of relative motion at
B =2 R=0,1, f=0,3:
a) relative trajectories; b) graphs of relative velocities

There is a question: at what value of the angle 8 the pattern of propagation of oscillations transforms from
the uniform to the accelerated one. It can be assumed that such a limit is the angle 3, which is equal to a friction
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angle, that is B=Arctgf (at f=0,3 8 = 16,7°). However, it is not the case, since at such an angle oscillations
have accelerated propagation. It is obvious that the angle [ is smaller than the friction angle.

It was determined by trial and error method: 8 = 15,7%. In this case the trajectory is a curve, which is
similar to a curtailed cycloid (Fig. 6,a). Relative velocity is stabilized in such a way that its value is changed
within the limits of 1...3 m/s (Fig. 6,b). The investigations show that the limit between uniform particle
oscillations and accelerated oscillations is the angle of plane inclination, which is somewhat smaller than the
friction angle.
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Figure 5. Kinematic characteristics of relative motion at
B =200 R=0,1, w=10s"1, f=0,5:
a) relative trajectory; b) graph of relative velocity change
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Figure 6. Kinematic characteristics of relative motion at
B =151, R=0,1, w = 10s"1, f=0,3:
a) relative trajectory; b) graph of relative velocity change

According to Fig. 4 and 6, with the increase of the angle of plane inclination, the trajectory of a particle
changes its form: it transforms from an extended cycloid into a curtailed one. It is logical to assume that
at a certain intermediate angle [ it may be a regular cycloid. Such an intermediate angle was determined
by trial and error method as well: 3 = 11°. The characteristic feature of such oscillations is the fact that a
particle drastically changes is movement direction at the points of trajectory winding (Fig. 7,a), which is not
possible without stopping. According to the graph of regular velocity change, its value ranges within the limits
of 0...2 m/s (Fig. 7,b), that is, at the point of winding the velocity is equal to zero.
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Figure 7. Kinematic characteristics of relative motion at
B=11° R=0,1, w=10s""1, f=0,3:
a) relative trajectory; b) graph of relative velocity change

Conclusions

The patterns of particle relative motion on a rough inclined plane, all the point of which describe circles
in oscillatory motion in the same plane have been determined. At the inclination angle being 5 = 0°, that is,
in the case of a horizontal plane, a particle describes a circle in relative motion, when the minimum angular
velocity of plane oscillations is reached. If there is an increase of the angular velocity, a circle radius is the
trajectory of relative motion is increases approaching to the radius of the circle of translational motion of
plane oscillations. If the plane is inclined, beginning from a horizontal position, the trajectories of relative
motion transform from circles into curves, which are similar to cycloids (extended, regular, curtailed), here,
their transformations take place with respect to plane inclination in the order enumerated in the parentheses.
With the increase of the angular velocity w, the pitch and the amplitude of relative particle oscillations increase,
here, their propagation direction does not coincide with the line of the greatest inclination, however, with the
increase of the angular velocity it approaches to it more and more. Until the moment when there is the boundary
value of the inclination angle 8 reached, which is somewhat smaller than the friction angle, oscillatory particle
movement in the direction close to the line of the greatest inclination takes place uniformly, that is to say, the
propagation velocity of oscillations in constant. Relative particle velocity changes similar to a sinusoidal law,
here, its maximum and minimum values remain constant. If there is further increase of the inclination angle 3,
the trajectory pitch becomes changeable, that is to say, it increases and relative velocity changes at the same
amplitude in such a way that its extremum values increase according to the linear law, that is to say, oscillations
have accelerated propagation.
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C.®. ITmmmaka, H.B. Knenmauit, B.1. Tpoxansk, A.C. Ilactymenko, A.B. Hosunknii

Bapiblk HyKTesepi KeJibey >Ka3bIKTHIKTa TepbesiMesIi KO3FaJabICTa

JOHIreJIeK CaJIaThblH MAaTePUAaJIAbIK OOJIMIEKTIiH KO3FaJIbIChI

Kenbey 6ypTik »Ka3bIKTHIK, GONBIMEH KO3FAJFaH MATEPUAJIBIK, OOJIIIEKTIH OChI YKA3BIKTHIKTa TepOeIMerti
KO3FaJIBICTa OPOIp HYKTECI AOHTeIeK ChI3aThIHIAN KO3FAIBICHIHBIH AuddOepEeHITNAIIbIK, TeHIeYl KYPhIIFaH.
2Ka3bIKThIK OONBIMEH KOKXKHUEKKe KOJibey OYpBIIIbIHA TOyeJI i GOJIIEKTIH KO3FAJIbICHIHBIH CAIBICTHIPMAIIBI
epekiIesikTepi 3eprrenmi. TeHgeynep cauablk omicTepmer mremntiiai. CaabICTBIPMaIbl KBUTIAMIBIKTAD Ta-
OBLIIBI YK9HE OOJIIIEKTED KO3FAJIBICHIHBIH, TPACKTOPHUSIIAPHI CATBIHIBI. 2K a3bIKTHIKKA KOJI0ey OYDBIIIbIHA,
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OYPBIMITHIK, *KbLUIIAMIBIKKA, KA3BIKTHIK, OOUBIMEH OOJIIIEKTIH YiTKey KO3 DUIneHTiHe, }Ka3bIKTHIK, HyKTe-
JIEPIHIH, KO3FAJIBICHI CAJIFaH JOHTEEK PaduyChiHa OAMIaHBICTEI OOJIIEKTEPAIH CAIbICTHIPMAJIb KO3FAIBIChI-
HBIH, KHHEMATHKAJIBIK XapPaKTEePUCTUKAIAPBI TAFAbIHIAJIIbI.

Kiam cosdep: kenbey Ka3bIKTHIK, TepOeIMeITi KO3FAIbIC, CAJIBICTHIPMAJIBI KO3FAJIBIC, OOJIIIEK, KHHEMATHKA~
JIBIK, TIapaMeTpJIep.

C.®. lTummaka, H.B. Knenauit, B.M1. Tpoxansk, A.C. Ilactymenko, A.B. HoBunknii

JBu>keHrne MaTepuaJJabHON YaCTHUIIbI IO HAKJIOHHOM MJIOCKOCTH,
BC€ TOUYKHM KOTOPO#l B KOoJie0aTeJIbHOM JABUYKEHUN
OIIMCHIBAIOT KPYTM B 3TOW K€ IJIOCKOCTU

Cocrayensl uddepeHnnalbHble YPABHEHNUs JIBUKEHUSI MaTEPHAJIBHON YaCTHIBI 110 HAKJIOHHOM IIepo-
XOBaTOH IJIOCKOCTH, OCYIIECTBIISIONIEH KosiebaTeIbHOe ABUKEHNE TAKUM 00Pa30M, UTO KarKJasl €e TOUKa
OIMCBIBAeT KPYyT' B 3TOi ke mockoctu. VcciietoBanbl 0COOEHHOCTH OTHOCHUTEJILHOIO JIBH2KEHUS “ACTHIIBI
II0 IJIOCKOCTH B 3aBHUCUMOCTH OT €e yIVIa HAKJIOHAa K TOPU3OHTY. ¥ DABHEHHS DEIIeHbl YHCICHHBIMU Me-
tomamu. HaiizieHo OTHOCHTEIbHOE CKOPOCTH U IIOCTPOEHA TPACKTOPHUS JBUKEHHS JaCTHI[. YCTAHOBJIEHBI
KMHEMaTUIEeCKHe XapaKTEPUCTUKU OTHOCUTEJIbHOI'O JBUKEHUS YACTHUIBI B 3aBUCUMOCTH OT yIJIa HAKJIOHA
IJIOCKOCTH, YIVIOBOM CKOPOCTH, KO3 (DUIMEHTa TPEHUs YACTHILI 10 IUIOCKOCTH ¥ PAJUyCa KPyTa JBUKEHUS
TOYEK IIJIOCKOCTH.

Karouesvie croea: HaKJIOHHAS IIJIOCKOCTbD, KoJiebareibHOe JBHU2KEHHNE, OTHOCUTEJIbHOE JIBU2KEHUE, JaCTUulla,
KHHEMaTH4YeCKHe ImapaMeTphl.
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