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ABSTRACT: Normal oscillations of the elastic bottom of a rigid rectangular
duct with an ideal non-compressive fluid, which completely fills it, were in-
vestigated. The elastic bottom is a membrane. It is shown that the frequency
equation is divided into two equations describing symmetric (even) and anti-
symmetric (odd) frequencies, and can be written in a single form for these fre-
quencies. For even and odd frequencies, an approximate formula is obtained,
from which approximate conditions follow for stability of coupled vibrations
of an elastic basis and a fluid. These conditions are independent of the liq-
uid height and the membrane mass. Exact stability conditions that coincide
with hydrostatic conditions are derived. It is shown that the approximate value
of the critical tension for asymmetric frequencies is 4/5 times lower, and for
symmetric frequencies, it is 0.818 times lower.

KEY WORDS: hydroelasticity, plane oscillations, ideal liquid, rectangular
membrane, stability.

1 INTRODUCTION

Based on the unified Lagrangian approach, the problem of oscillations and stability
of an elastic rectangular plate separating ideal liquids of different densities in a rect-
angular channel was first considered in the article [1]. In work [2] this problem was
considered based on the Lagrange-Euler approach. The most complete study of free
oscillations of a membrane on a free surface of a liquid in a rectangular channel was
carried out in [3]. In [4] this problem was generalized in the case of a two-layer liq-
uid with membranes on the free and internal surfaces for a rectangular channel with
an elastic bottom. In work [5], transverse vibrations of a liquid in a long cylindrical
container with a membrane or an elastic plate on a free surface were studied. Arti-
cles [6–8] continue the study of the publication [4]. For an infinitely long rectangular
container with rigid walls Bauer & Eidel [9] carried out a theoretical analysis on the
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following two systems: the first case is a tank with a rigid bottom and sidewall, where
a free surface is covered by a membrane, while the second case is a container having
a membrane bottom and a free surface. In the analysis, the nonlinear stress-strain re-
lation and a large amplitude motion of the membrane were taken into consideration.
In addition, some works has been performed on the hydroelastic behavior of separat-
ing walls in road and ship tankers [10], where tanks with fluids have finite sizes in all
directions, only numerical approaches are available in the literature [11–13].

Many works deal with hydroelastic oscillations of an ideal liquid in circular and
coaxial cylinders with rigid and elastic bases: [14–20] and many others. Symmetric
and asymmetric vibrations of a plate or membrane on the free surface of an ideal fluid
in a circular reservoir with an absolutely rigid bottom are considered in detail in [14].
Asymmetric oscillations of a circular plate on a free surface of an ideal liquid in a
circular cylinder were studied in [15].

Regarding the non-linear problem of the topic, there are only a few studies in the
literature [9, 16, 17]. In [16, 17], theoretical analysis and experimental study were
carried out for nonlinear hydroelastic oscillations of a cylindrical tank with an elastic
bottom. In paper [17], a linear axisymmetric free oscillations analysis of the bottom
plate of the tank, coupled with the contained liquid is presented. This analysis takes
into account the effect of an in-plane force in the plate due to the static pressure of
the liquid.

In article [18], oscillations of an ideal fluid in a circular cylindrical tank with the
same elastic bases in the form of circular plates are considered. The analytical method
based on Fourier-Bessel expansion and the Rayleigh-Ritz method was proposed.

In the article [19], the frequency equation of axisymmetric oscillations of a heavy
two-layer ideal liquid in a rigid annular cylindrical tank with an elastic top and bottom
in the form of clamped annular plates is derived. The work [20] deals with the study
of frequency equations of asymmetric and symmetric natural oscillations of an ideal
bilayer liquid in a rigid circular cylindrical tank with an elastic top and bottom in the
form of clamped circular plates. Using the example of a homogeneous liquid with a
free surface and an elastic bottom in the form of a membrane, the frequency spectrum
was analyzed analytically and numerically.

This article continues the research begun in [1–8]. The frequency equation of
the coupled vibrations of a rectangular membrane and an ideal liquid is derived, the
possibility of simplifying this equation is shown, approximate, and exact stability
conditions of the coupled vibrations of the membrane and liquid are obtained.

2 FORMULATION OF THE PROBLEM

Let us consider plane vibrations of an elastic base in the form of a membrane in a
rigid rectangular channel with an ideal and incompressible liquid. The channel of the



294 On the Stability of Coupled Oscillations of the Elastic Bottom of ...

width b (b = 2a) and height h is filled with liquid of ρ density. The coordinate system
Oxyz is such that the plane Oxy lies on the undisturbed surface of the membrane,
the axis Oy is directed along its middle of the channel, and the axis Oz is opposite to
the acceleration vector of gravity ~g (Fig. 1).
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Fig. 1: A rigid rectangular channel with a liquid and an elastic bottom in the form of
a membrane.

Oscillations of the membrane and liquid are considered in a linear formulation,
assuming their oscillations without interruption, and the motion of a liquid is po-
tential. Equations of plane vibrations of an elastic membrane and a liquid have the
form [4, 6]:

(1) k0
∂2W

∂t2
− T ∂

2W

∂x2
− gρW = ρ

∂Φ

∂t
+Q+ P0 at z = 0,

∂2Φ

∂x2
+
∂2Φ

∂z2
= 0

with boundary conditions

∂Φ

∂x

∣∣∣
x=±a

= 0,
∂Φ

∂z

∣∣∣
z=h

= 0,
∂W

∂t
=
∂Φ

∂z
at z = 0,(2)

W
∣∣∣
x=±a

= 0 ,

a∫
−a

Wdx = 0 .(3)

Here k0 = ρ0h0; W (x, t), ρ0, h0 are, respectively, normal flexure, density and thick-
ness of the membrane; Φ(x, z, t) is the fluid velocity potential; Q is an arbitrary time
function; P0 is a preset external pressure on the elastic bottom.

3 SOLUTION METHOD

The function Φ(x, z, t) is represented in the form of the Fourier series with respect to
Eigen-functions ψn(x)

(4) Φ(x, z, t) =

∞∑
n=1

[An(t)eknz +Bn(t)e−knz]ψn(x) ,
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where the functions ψn(x) = cos kn(x + a) and their corresponding eigenvalues
kn = πn/2a describe oscillations of an ideal liquid in the rectangular channel.

Considering (4) and (2), Eq. (1) takes the form

(5) k0
∂2W

∂t2
− T ∂

2W

∂x2
− gρW = −

∞∑
n=1

anẄn

kn
ψn +Q+ P0 .

Here

Wn =
1

N2
n

a∫
−a

Wψndx , an = ρ cothκn , N
2
n =

a∫
−a

ψ2
ndx = a , κn = hkn .(6)

Thus, coupled oscillations of the elastic membrane and liquid are found from the
system of integral differential Eqs. (5) and (6), the boundary conditions, and the
incompressibility conditions of the liquid (3) and the given initial conditions.

4 NORMAL COUPLED OSCILLATIONS OF THE ELASTIC MEMBRANE AND

LIQUID

To find the Eigen-frequencies of the coupled oscillations of the elastic plate and the
liquid, we set

(7) W (x, t) = w(x)eiωt , Q = Q̃eiωt , P0 = P̃0e
iωt .

Considering (7) we obtain the boundary-value problem

d2w

dx2
+ qw = −ω

2

T

∞∑
n=1

anwn

kn
ψn + C ,(8)

wn =
1

a

a∫
−a

wψndx ,

a∫
−a

wdx = 0 , w
∣∣∣
x=±a

= 0 ,(9)

where

q = (gρ+ k0ω
2)/T > 0 , C = −(Q̃+ P̃0)/T , ãn = an + knk0 , d̃n = Tk2n− gρ .

We look for the solution of Eq. (8) in the form of the general solution of the homo-
geneous equation and a particular solution of the inhomogeneous one

(10) w =
2∑

k=1

A0
kw

0
k +

∞∑
n=1

C̃nψn + w0 .
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Here w0
k = {sin px, cos px}, p =

√
q, and A0

k, C̃n, w0 are unknown constants.
We will represent C̃n and w0 through unknown constants A0

k. To do this, we
substitute (10) into Eq. (8) and in the first relation (9)

(11) C̃n = ω2 an
kndn − ω2an

2∑
k=1

A0
kE

0
kn , w0 = −

2∑
k=1

w̃0
kA

0
k ,

where dn = Tk2n − gρ− k0ω2,

E0
kn =

1

a

a∫
−a

w0
kψndx =

Tp

adn
{[(−1)n − 1] cos p̃, [(−1)n + 1] sin p̃} ,(12)

w̃0
k =

1

2a

a∫
−a

w0
kdx =

1

p̃

{
0, k = 1,

sin p̃, k = 2
, p̃ = a

√
q .

Taking into account the relations (11) and (10) the final expression for the shape of
the flexure of the membrane will take the form

(13) w =
2∑

k=1

(
w0
k − w̃0

k − ω2
∞∑
n=1

anE
0
kn

ω2ãn − knd̃n
ψn

)
A0

k .

Here ãn = an + knk0, d̃n = Tk2n − gρ.
From the boundary conditions for membrane fixing, there are two linear homoge-

neous equations with respect to unknowns A0
k

(14)
2∑

k=1

(
Bjk − ω2

∞∑
n=1

αnE
0
knB

∗
jn

)
A0

k = 0 , (j = 1, 2) ,

where

Bjk = (w0
k − w̃0

k)
∣∣∣
x=±a

, B∗jn =

{
1, j = 1, (x = −a)

(−1)n, j = 2, (x = a)
,(15)

αn =
an

ω2ãn − knd̃n
.

The frequency equation of natural oscillations of the elastic membrane and the
liquid is obtained from the equality to zero of the determinant of the homogeneous
system (14)
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(16)
(
B11 − ω2

∞∑
n=1

αnE
0
1n

)(
B22 − ω2

∞∑
n=1

αnE
0
2n(−1)n

)
−
(
B12 − ω2

∞∑
n=1

αnE
0
2n

)(
B21 − ω2

∞∑
n=1

αnE
0
1n(−1)n

)
= 0 .

Using the expansion of the functions w0
k in series with respect to complete and

orthogonal system of functions ψn(x), equation (16) can be rewritten as

(17)
( ∞∑
n=1

βnE
0
1n

)( ∞∑
n=1

βnE
0
2n(−1)n

)
−
( ∞∑
n=1

βnE
0
2n

)( ∞∑
n=1

βnE
0
1n(−1)n

)
= 0 .

Here βn = 1− ω2αn = −kndn/
(
ω2ãn − knd̃n

)
.

It follows from the expression E0
kn that Eq. (17) can be written in the form

( ∞∑
m=1

β̃2m−1

)( ∞∑
m=1

β̃2m

)
= 0

or

(18)
∞∑
n=1

kn/(ω
2ãn − knd̃n) = 0 .

Here β̃n = kn/
(
ω2an − kndn

)
= kn/

(
ω2ãn − knd̃n

)
.

Thus, the frequency Eq. (17) splits into two equations describing odd (n = 2m−
1) and even (n = 2m) frequencies and can be written in a single form for these
frequencies (18). It should be noted that this simplification was achieved due to
expansion of a function w0

k in series with respect to the complete and orthogonal
system of Eigen-function ψn(x). Normal modes of free oscillations of the membrane
will be found from relations (13) and (14).

The left-hand part of Eq. (18) is a monotonically increasing function of the pa-
rameter ω2 on the interval (knd̃n/ãn, kn+1d̃n+1/ãn+1) (n = 1, 2, . . .), the func-
tion takes on its values from −∞ to ∞. Therefore, between two successive values
knd̃n/ãn there is only one root of Eq. (18). This determines in advance the in-
tervals, in which the natural frequencies are located. On the increase of number
of terms of the series, the previous roots will be refined and new ones will ap-
pear. Squares of high frequencies (n � 1) will be little different from the mag-
nitude ω2

n = kn(Tk2n − gρ)/(ρ cothκn + knk0). It follows from this equality that
T > gρ/k2n, the addiction to ω2

n depending on T is linear, the greatest value ω2
n
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will be when k0 = 0, i.e. for the inertia-free membrane. Squares of frequencies ω2
n

are slightly dependent on the filling depth h and decrease with its reduction. Thus,
the problem under consideration has an infinite discrete spectrum of eigenvalues ω2

l ,
which are the roots of Eq. (18), and the corresponding Eigen-functions wl(x) form a
complete orthogonal system of functions on the segment [−a, a].

However, the problem under consideration has a number of physical features. In
order that there is no rupture of continuity (formation of cavitation), the pressure
inside the liquid must be non-negative. For this, the external pressure on the lower
elastic foundation P0 should not be less than the value g(ρh + k0). This inequality
does not take into account the magnitude of the membrane tension T . Naturally, by
increasing the tension, one can always achieve positive pressure inside the liquid.
Critical values of the tension will be found from the stability conditions of the vibra-
tions of the membrane and liquid. The frequency Eq. (18) can be formally obtained
from the equations of [6, 8] if we set the density of the lower liquid to zero (ρ2 = 0).

5 APPROXIMATE AND ACCURATE CONDITIONS OF STABILITY OF COUPLED

OSCILLATIONS OF THE MEMBRANE AND LIQUID. DYNAMIC APPROACH

If we retain two terms in the series of equation (18), then we obtain an approximate
frequency equation, whose solution in dimensionless variables for odd (n = 1, 3)
and even (n = 2, 4) frequencies, respectively, takes the form

Ω2 = 6π
5π2T̃ − 1

3 cothπh̃+ coth 3πh̃+ 6πk̃0
, (n = 1, 3) ,

Ω2 = 8π
10π2T̃ − 1

2 coth 2πh̃+ coth 4πh̃+ 4πk̃0
, (n = 2, 4) .

(19)

Here Ω2 = ω2b/g, T̃ = T/gρb2, h̃ = h/b, k̃0 = k0/ρb.
It follows from formulas (19) that the dependence of the square of a dimensionless

frequency on a dimensionless tension is linear, the inertia-free membrane has the
greatest frequency, frequencies almost do not depend on the filling depth at h̃ > 1
and decrease with decreasing depth.

From the inequality Ω2 > 0 we obtain the approximate stability conditions for
the oscillations of the membrane and the liquid

T̃ > 1/5π2 ≈ 0.025325 (n = 1, ) ,

T̃ > 1/10π2 ≈ 0.0123819 (n = 2, 4) .
(20)

The stability conditions (20) do not depend on the depth of liquid and the mass
of the membrane. It can be seen from them that for the stability of asymmetrical
oscillations, a twice as large amount of tension is needed than for symmetric ones.
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To clarify conditions (20), we proceed in the same way as in [6, 8]. In Eq. (18)
we set ω2 = 0 and solve the resulting equation with respect to the critical values
of the parameters. When ω2 = 0, Eq. (18) takes the form

∑∞
n=1 1/d̃n = 0 or in

dimensionless variables

(21)
∞∑
n=1

1/(n2 − α2) = 0 ,

where α2 = 1/T̃π2.
Number series

∑∞
n=1 1(n2−α2) for odd (n = 2m−1) and even (n = 2m) values

n can be represented as

∞∑
k=1

1

(2k − 1)2 − α2
=

π

4α
tan

πα

2
,

∞∑
k=1

1

(2k)2 − α2
= − 1

4α2

(
πα cot

πα

2
− 2
)
.

(22)

The solution of Eq. (21) with n = 2m− 1, taking into account (22), has the form
α = 2l. From this solution we find the critical values of the tension T̃ = 1/4π2l2,
which gives the following exact stability condition for l = 1:

T̃ > 1/4π2 ≈ 0.02562 .

The first root of Eq. (21) with n = 2m, taking into account (22), has the form
πα/2 = 4.493409458, from which the updated stability condition follows:

T̃ > 0.0127319 .

Thus, the approximate value of the critical tension for asymmetric and symmetric fre-
quencies is 4/5 and 0.818 times lower, respectively. It should be noted that proximity
of the approximate value and the exact takes place, taking into account two terms of
the series we obtain sufficient accuracy for practice.
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6 STATIC STABILITY CONDITIONS FOR THE EQUILIBRIUM POSITION OF THE

MEMBRANE AND LIQUID. STATIC APPROACH

In the case of a static analysis of the perturbation problem, we have

d2W

dx2
+ β2W = C̃ ,(23)

W
∣∣∣
x=∓a

= 0 ,

a∫
−a

Wdx = 0 ,(24)

where β2 = gρ/T , C̃ = −(P0 +Q)/T .
Equation (23) has a solution

(25) W = A sinβx+B cosβx+ C .

Here C = −(P0 +Q)/ρg.
The Q constant is unknown. Substituting (25) into the boundary conditions and

the incompressibility condition for the liquid (24), we obtain a homogeneous system
of equations with respect to unknowns A, B and C

−A sinβa+B cosβa+C = 0 , A sinβa+B cosβa+C = 0 , B sinβa+Cβa = 0

or

(26) A sinβa = 0 , B cosβa+ C = 0 , B sinβa+ Cβa = 0 .

For existence of nonzero solution of the homogeneous system (26) its determinant
must be equal to zero

(27) sinβa(βa cosβa− sinβa) .

It follows from (27) that the nonzero asymmetric solution (A 6= 0) at βa = πl
and B = C = 0(Q = −P0), a nonzero symmetric solution (B 6= 0, C 6= 0) at
cotβa = 1/βa and A = 0.

From the equality βa = πl(βa = πα/2) we get T = gρa2/π2l2 (T̃ = 1/4π2l2)
and the asymmetric deflections of the membrane have the form Wl = Al sinπlx/a,
from equation cotβa = 1/βa we have T = gρ/β2l (T̃ = 1/(2βla)2, βla are the
root of this equation) and the symmetrical deflections of the membrane are written as
Wl = Bl(cosβlx− cosβla).

These equilibrium modes are realized when the tension is not less than the corre-
sponding critical values gρa2/π2 and gρ/β2l . It can be seen that with an increase in
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the density or the channel width, the tension necessary for stability should increase.
The pressure in a liquid should be positive for z = 0, and taking into account the
mass of the membrane, the pressure P0 must be at least g(ρh+ k0).

It should be noted that the critical stress values found according to the static ap-
proach coincide with the exact values obtained by the dynamic approach. Thus, the
simple static approach makes it possible to determine the conditions for the stability
of coupled oscillations of a membrane and a liquid.

7 SUMMARY AND DIRECTIONS FOR FURTHER RESEARCH

Based on the analytical and numerical studies, we can conclude the following:
1. Natural oscillation frequencies of the membrane and liquid for asymmetric and

symmetric frequencies are presented in a single form.
2. An approximate formula for high frequencies is obtained. The dependence of

the square of the frequency on the tension is linear. The highest frequency value will
occur for an inertia-free membrane. Frequencies decrease with the decrease of the
liquid depth.

3. Taking into account two terms of the series, an approximate formula is obtained
for a square of dimensionless frequency. The main conclusions from this formula
coincide with the results obtained for high frequencies.

4. The approximate stability conditions for the coupled vibrations of the mem-
brane and liquid are derived. These conditions are independent of the depth of the
liquid and the mass of the membrane. The stability of asymmetric oscillations re-
quires twice as much critical tension as for symmetric vibrations.

5. The stability conditions of the static approach coincide with the exact stability
conditions of the dynamic approach.

6. It follows from the exact stability conditions, that approximate values of the
critical tension for asymmetric and symmetric frequencies are underestimated by 4/5
and 0.818 times, respectively. Thus, taking into account two terms of the series gives
accuracy sufficient for practice.

7. Using numerical calculations we establish that with the increase of the number
of terms in series of the frequency equation the previous frequencies are refined and
new ones appear. To obtain acceptable accuracy, it is enough to take into account
10–20 terms of the series.

In the future, it is planned to consider an elastic base in the form of a rectangular
plate taking into account tensile or compressive stresses and to compare the stability
conditions obtained from the dynamic and static approaches. It is also planned to
consider this problem taking into account elastic upper and lower bases and to study
the frequency spectrum and stability conditions.
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