Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/12580
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorСамойленко, Микола Олександрович-
dc.contributor.authorSamoylenko, Mykola-
dc.contributor.authorКравченко, Олена Олександрівна-
dc.contributor.authorKravchenko, Helen-
dc.contributor.authorКалиниченко, Галина Іванівна-
dc.contributor.authorKalinichenko, Galina-
dc.date.accessioned2023-02-10T08:46:20Z-
dc.date.available2023-02-10T08:46:20Z-
dc.date.issued2022-
dc.identifier.citationSlyusar, V., Protsenko, M., Chernukha, A., Melkin, V., Biloborodov, O., Samoilenko, M., . . . Soloshchuk, M. (2022). Improving the Model of Object Detection on Aerial Photographs and Video in Unmanned Aerial Systems. Eastern-European Journal of Enterprise Technologies, 1(9-115), 24-34. doi:10.15587/1729-4061.2022.252876uk_UA
dc.identifier.urihttps://dspace.mnau.edu.ua/jspui/handle/123456789/12580-
dc.description.abstractThis paper considers a model of object detection on aerial photographs and video using a neural network in unmanned aerial systems. The development of artificial intelligence and computer vision systems for unmanned systems (drones, robots) requires the improvement of models for detecting and recognizing objects in images and video streams. The results of video and aerial photography in unmanned aircraft systems are processed by the operator manually but there are objective difficulties associated with the operator’s processing of a large number of videos and aerial photographs, so it is advisable to automate this process. Analysis of neural network models has revealed that the YOLOv5x model (USA) is most suitable, as a basic model, for performing the task of object detection on aerial photographs and video. The Microsoft COCO suite (USA) is used to train this model. This set contains more than 200,000 images across 80 categories. To improve the YOLOv5x model, the neural network was trained with a set of VisDrone 2021 images (China) with the choice of such optimal training parameters as the optimization algorithm SGD; the initial learning rate (step) of 0.0005; the number of epochs of 25. As a result, a new model of object detection on aerial photographs and videos with the proposed name VisDroneYOLOv5x was obtained. The effectiveness of the improved model was studied using aerial photographs and videos from the VisDrone 2021 set. To assess the effectiveness of the model, the following indicators were chosen as the main indicators: accuracy, sensitivity, the estimation of average accuracy. Using a convolutional neural network has made it possible to automate the process of object detection on aerial photographs and video in unmanned aerial systems.uk_UA
dc.language.isoenuk_UA
dc.publisherMykolayiv National Agrarian Universityuk_UA
dc.publisherCentral Scientific Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine-
dc.publisherNational Technical University «Kharkiv Polytechnic Institute»-
dc.subjectmicrosoft cocouk_UA
dc.subjectneural networkuk_UA
dc.subjectobject detectionuk_UA
dc.subjectunmanned aerial systemuk_UA
dc.subjectVisdrone 2021uk_UA
dc.subjectYolov5xuk_UA
dc.subjectobject detectionuk_UA
dc.subjectdeep learninguk_UA
dc.subjectIOUuk_UA
dc.subjectMathematics: Applied Mathematicsuk_UA
dc.subjectEngineering: Industrial and Manufacturing Engineeringuk_UA
dc.subjectBusiness, Management and Accounting: Management of Technology and Innovationuk_UA
dc.subjectEngineering: Mechanical Engineeringuk_UA
dc.subjectAgricultural and Biological Sciences: Food Scienceuk_UA
dc.subjectEnergy: Energy Engineering and Power Technologyuk_UA
dc.subjectEngineering: Control and Systems Engineeringuk_UA
dc.subjectComputer Science: Computer Science Applicationsuk_UA
dc.subjectEngineering: Electrical and Electronic Engineeringuk_UA
dc.subjectEnvironmental Science: Environmental Chemistryuk_UA
dc.titleImproving the Model of Object Detection on Aerial Photographs and Video in Unmanned Aerial Systemsuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Статті (Факультет агротехнологій)
Статті (Факультет ТВППТСБ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Samoilenko-2022-1.pdf797,48 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.