Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
https://dspace.mnau.edu.ua/jspui/handle/123456789/12580
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Самойленко, Микола Олександрович | - |
dc.contributor.author | Samoylenko, Mykola | - |
dc.contributor.author | Кравченко, Олена Олександрівна | - |
dc.contributor.author | Kravchenko, Helen | - |
dc.contributor.author | Калиниченко, Галина Іванівна | - |
dc.contributor.author | Kalinichenko, Galina | - |
dc.date.accessioned | 2023-02-10T08:46:20Z | - |
dc.date.available | 2023-02-10T08:46:20Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Slyusar, V., Protsenko, M., Chernukha, A., Melkin, V., Biloborodov, O., Samoilenko, M., . . . Soloshchuk, M. (2022). Improving the Model of Object Detection on Aerial Photographs and Video in Unmanned Aerial Systems. Eastern-European Journal of Enterprise Technologies, 1(9-115), 24-34. doi:10.15587/1729-4061.2022.252876 | uk_UA |
dc.identifier.uri | https://dspace.mnau.edu.ua/jspui/handle/123456789/12580 | - |
dc.description.abstract | This paper considers a model of object detection on aerial photographs and video using a neural network in unmanned aerial systems. The development of artificial intelligence and computer vision systems for unmanned systems (drones, robots) requires the improvement of models for detecting and recognizing objects in images and video streams. The results of video and aerial photography in unmanned aircraft systems are processed by the operator manually but there are objective difficulties associated with the operator’s processing of a large number of videos and aerial photographs, so it is advisable to automate this process. Analysis of neural network models has revealed that the YOLOv5x model (USA) is most suitable, as a basic model, for performing the task of object detection on aerial photographs and video. The Microsoft COCO suite (USA) is used to train this model. This set contains more than 200,000 images across 80 categories. To improve the YOLOv5x model, the neural network was trained with a set of VisDrone 2021 images (China) with the choice of such optimal training parameters as the optimization algorithm SGD; the initial learning rate (step) of 0.0005; the number of epochs of 25. As a result, a new model of object detection on aerial photographs and videos with the proposed name VisDroneYOLOv5x was obtained. The effectiveness of the improved model was studied using aerial photographs and videos from the VisDrone 2021 set. To assess the effectiveness of the model, the following indicators were chosen as the main indicators: accuracy, sensitivity, the estimation of average accuracy. Using a convolutional neural network has made it possible to automate the process of object detection on aerial photographs and video in unmanned aerial systems. | uk_UA |
dc.language.iso | en | uk_UA |
dc.publisher | Mykolayiv National Agrarian University | uk_UA |
dc.publisher | Central Scientific Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine | - |
dc.publisher | National Technical University «Kharkiv Polytechnic Institute» | - |
dc.subject | microsoft coco | uk_UA |
dc.subject | neural network | uk_UA |
dc.subject | object detection | uk_UA |
dc.subject | unmanned aerial system | uk_UA |
dc.subject | Visdrone 2021 | uk_UA |
dc.subject | Yolov5x | uk_UA |
dc.subject | object detection | uk_UA |
dc.subject | deep learning | uk_UA |
dc.subject | IOU | uk_UA |
dc.subject | Mathematics: Applied Mathematics | uk_UA |
dc.subject | Engineering: Industrial and Manufacturing Engineering | uk_UA |
dc.subject | Business, Management and Accounting: Management of Technology and Innovation | uk_UA |
dc.subject | Engineering: Mechanical Engineering | uk_UA |
dc.subject | Agricultural and Biological Sciences: Food Science | uk_UA |
dc.subject | Energy: Energy Engineering and Power Technology | uk_UA |
dc.subject | Engineering: Control and Systems Engineering | uk_UA |
dc.subject | Computer Science: Computer Science Applications | uk_UA |
dc.subject | Engineering: Electrical and Electronic Engineering | uk_UA |
dc.subject | Environmental Science: Environmental Chemistry | uk_UA |
dc.title | Improving the Model of Object Detection on Aerial Photographs and Video in Unmanned Aerial Systems | uk_UA |
dc.type | Article | uk_UA |
Розташовується у зібраннях: | Публікації науково-педагогічних працівників МНАУ у БД Scopus Статті (Факультет агротехнологій) Статті (Факультет ТВППТСБ) |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Samoilenko-2022-1.pdf | 797,48 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.