Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/14102
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorPetrova, Olena-
dc.contributor.authorПетрова, Олена Іванівна-
dc.contributor.authorSlyusar, Vadym-
dc.contributor.authorProtsenko, Mykhailo-
dc.contributor.authorChernukha, Anton-
dc.contributor.authorMelkin, Vasyl-
dc.contributor.authorKravtsov, Mikhail-
dc.contributor.authorVelma, Svitlana-
dc.contributor.authorKosenko, Nataliia-
dc.contributor.authorSydorenko, Olga-
dc.contributor.authorSobol, Maksym-
dc.date.accessioned2023-05-30T10:50:04Z-
dc.date.available2023-05-30T10:50:04Z-
dc.date.issued2021-
dc.identifier.citationSlyusar, V., Protsenko, M., Chernukha, A., Melkin, V., Petrova, O., Kravtsov, M., . . . Sobol, M. (2021). Improving a neural network model for semantic segmentation of images of monitored objects in aerial photographs. Eastern-European Journal of Enterprise Technologies, 6(2-114), 86-95. doi:10.15587/1729-4061.2021.248390uk_UA
dc.identifier.urihttps://dspace.mnau.edu.ua/jspui/handle/123456789/14102-
dc.description.abstractThis paper considers a model of the neural network for semantically segmenting the images of monitored objects on aerial photographs. Unmanned aerial vehicles monitor objects by analyzing (processing) aerial photographs and video streams. The results of aerial photography are processed by the operator in a manual mode; however, there are objective difficulties associated with the operators handling a large number of aerial photographs, which is why it is advisable to automate this process. Analysis of the models showed that to perform the task of semantic segmentation of images of monitored objects on aerial photographs, the U-Net model (Germany), which is a convolutional neural network, is most suitable as a basic model. This model has been improved by using a wavelet layer and the optimal values of the model training parameters: speed (step) − 0.001, the number of epochs — 60, the optimization algorithm — Adam. The training was conducted by a set of segmented images acquired from aerial photographs (with a resolution of 6,000×4,000 pixels) by the Image Labeler software in the mathematical programming environment MATLAB R2020b (USA). As a result, a new model for semantically segmenting the images of monitored objects on aerial photographs with the proposed name U-NetWavelet was built. The effectiveness of the improved model was investigated using an example of processing 80 aerial photographs. The accuracy, sensitivity, and segmentation error were selected as the main indicators of the models efficiency. The use of a modified wavelet layer has made it possible to adapt the size of an aerial photograph to the parameters of the input layer of the neural network, to improve the efficiency of image segmentation in aerial photographs; the application of a convolutional neural network has allowed this process to be automatic.uk_UA
dc.language.isootheruk_UA
dc.publisherMykolayiv National Agrarian Universityuk_UA
dc.publisherCentral Scientific Research Institute of Armament and Military Equipment of the Armed Forces of Ukraine-
dc.publisherNational University of Civil Defence of Ukraine-
dc.publisherKharkiv National Automobile and Highway University-
dc.publisherNational University of Pharmacy-
dc.publisherO. M. Beketov National University of Urban Economy in Kharkiv-
dc.publisherNational Technical University “Kharkiv Polytechnic Institute”-
dc.subjectAerial photographuk_UA
dc.subjectConvolutional neural networkuk_UA
dc.subjectSemantic segmentation of imagesuk_UA
dc.subjectUnmanned aerial vehicleuk_UA
dc.subjectObject Detectionuk_UA
dc.subjectDeep Learninguk_UA
dc.subjectIOUuk_UA
dc.titleImproving a neural network model for semantic segmentation of images of monitored objects in aerial photographsuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Статті (Факультет ТВППТСБ)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Petrova-2021-1.pdf1,2 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.