Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/15628
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorГанніченко, Тетяна Анатоліївна-
dc.contributor.authorHannichenko, Tetyana-
dc.contributor.authorBidyuk, Peter-
dc.contributor.authorKalinina, Irina-
dc.contributor.authorЖебко, Олександр Олегович-
dc.contributor.authorZhebko, Oleksandr-
dc.date.accessioned2023-10-24T06:21:17Z-
dc.date.available2023-10-24T06:21:17Z-
dc.date.issued2023-
dc.identifier.citationBidyuk, P., Kalinina, I., Zhebko, O., Gozhyj, A., & Hannichenko, T. (2023, June 3). Classification System Based on Ensemble Methods for Solving Machine Learning Tasks CEUR Workshop Proceedings, Lviv, Ukraine.uk_UA
dc.identifier.urihttps://dspace.mnau.edu.ua/jspui/handle/123456789/15628-
dc.description.abstractThe paper investigates the solution of the classification problem using a two-level structure of model ensembles based on machine learning methods. The general structure of a two-level ensemble for solving classification problems is proposed. Based on the use of the two-level ensemble learning structure in the processing of two datasets, the quality of classification was improved. The procedures for processing the datasets included identifying and describing the key quality characteristics of the models, selecting a metric, selecting the base models, selecting parameters for the base models and ensemble methods. Preliminary data processing was performed. The basic datasets are divided into training and test samples, and input variables are generated. The results of applying simple classifiers and the ensemble of the two-level classification model are presented, and the efficiency of the developed classification models is evaluated. A two-level ensemble structure was used to find a compromise between the bias and variance inherent in machine learning models. At the first level of the ensemble, stacking was used to reduce the bias of the base models. This resulted in a preliminary improvement in classification quality. At the second level, bagging was used to reduce the variance of the base models. The basic classification models and ensemble models based on stacking and bagging, as well as metrics for assessing the quality of using basic classifiers and models of the first and second levels, were studied.uk_UA
dc.language.isoenuk_UA
dc.publisherMykolayiv National Agrarian Universityuk_UA
dc.publisherNational Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute-
dc.publisherBeresteiskyi (former Peremohy)-
dc.publisherPetro Mohyla Black Sea National University-
dc.subjectBagginguk_UA
dc.subjectClassification taskuk_UA
dc.subjectEnsemble modelsuk_UA
dc.subjectForecastinguk_UA
dc.subjectQuality metrics of classifiersuk_UA
dc.subjectStackinguk_UA
dc.subjectStructure of the two-level ensembleuk_UA
dc.subjectData handlinguk_UA
dc.subjectMachine learninguk_UA
dc.subjectBase modelsuk_UA
dc.subjectClassification modelsuk_UA
dc.subjectClassification tasksuk_UA
dc.subjectEnsemble modelsuk_UA
dc.subjectQuality metric of classifieruk_UA
dc.subjectQuality metricesuk_UA
dc.subjectStackingsuk_UA
dc.subjectStructure of the two-level ensembleuk_UA
dc.subjectTwo level ensemblesuk_UA
dc.subjectClassification (of information)uk_UA
dc.subjectImbalanced Datauk_UA
dc.subjectCost-Sensitive Learninguk_UA
dc.subjectData Classificationuk_UA
dc.titleClassification System Based on Ensemble Methods for Solving Machine Learning Tasksuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Статті (Факультет культури і виховання)

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper1.pdf1,12 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.