Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/16749
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorАтаманюк, Ігор Петрович-
dc.contributor.authorAtamanyuk, Igor-
dc.contributor.authorKacprzyk, Janusz-
dc.contributor.authorKondratenko, Yuriy P.-
dc.contributor.authorSolesvik, Marina-
dc.date.accessioned2024-01-15T13:13:38Z-
dc.date.available2024-01-15T13:13:38Z-
dc.date.issued2019-
dc.identifier.citationAtamanyuk, I., Kacprzyk, J., Kondratenko, Y. P., & Solesvik, M. (2019). Control of Stochastic Systems Based on the Predictive Models of Random Sequences. У Studies in Systems, Decision and Control (с. 105–128). Springer International Publishing. https://doi.org/10.1007/978-3-030-21927-7_6uk_UA
dc.identifier.urihttps://dspace.mnau.edu.ua/jspui/handle/123456789/16749-
dc.descriptionПовний текст статті доступний з сайту видавця за посиланням: https://link.springer.com/chapter/10.1007/978-3-030-21927-7_6uk_UA
dc.description.abstractThis chapter is devoted to the development of the mathematical models of stochastic control systems based on the predictive models of random sequences. In particular, the linear algorithms of the forecast of a control object state for an arbitrary number of states of an investigated object and the values of a control parameter are obtained. In a mean-square sense, the algorithms allow one to get an optimal estimation of the future values of a forecasted parameter, in case true known values for an observation interval are used, provided that the measurements are made with errors. Using an arbitrary number of non-linear stochastic relations, a predictive model of a control system is obtained as well. The schemes that reflect the peculiarities of determining the parameters of a nonlinear algorithm and its functioning regularities are introduced in the work. Developed models allows one to take the peculiarities of the sequence of the change of control object parameters into full consideration and also to make full use of all known priori and posteriori information about the random sequence that was investigated. The algorithms obtained in this chapter can be used in different areas of human activity to solve a wide range of problems of the control of the objects of stochastic nature.uk_UA
dc.language.isoenuk_UA
dc.publisherMykolayiv National Agrarian Universityuk_UA
dc.publisherPolish Academy of Sciences-
dc.publisherPetro Mohyla Black Sea National University-
dc.publisherNord University Business School-
dc.subjectCanonical expansionuk_UA
dc.subjectControluk_UA
dc.subjectPredictive modelsuk_UA
dc.subjectRandom sequencesuk_UA
dc.subjectStochastic systemsuk_UA
dc.subjectRandom Sequenceuk_UA
dc.subjectSmart Homeuk_UA
dc.subjectAutomationuk_UA
dc.titleControl of Stochastic Systems Based on the Predictive Models of Random Sequencesuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Статті (Інженерно-енергетичний факультет)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Atamanyuk-2019.pdf3,24 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.