Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/16750
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorШебанін, В’ячеслав Сергійович-
dc.contributor.authorShebanin, Vyacheslav-
dc.contributor.authorАтаманюк, Ігор Петрович-
dc.contributor.authorAtamanyuk, Igor-
dc.contributor.authorKondratenko, Volodymyr-
dc.contributor.authorKondratenko, Yuriy-
dc.contributor.authorSolesvik, Marina-
dc.date.accessioned2024-01-16T07:24:03Z-
dc.date.available2024-01-16T07:24:03Z-
dc.date.issued2019-
dc.identifier.citationAtamanyuk, I., Kondratenko, V., Kondratenko, Y., Shebanin, V., & Solesvik, M. (2018). Models and Algorithms for Prediction of Electrical Energy Consumption Based on Canonical Expansions of Random Sequences. Green IT Engineering: Social, Business and Industrial Applications (с. 397–421). Springer International Publishing. https://doi.org/10.1007/978-3-030-00253-4_17uk_UA
dc.identifier.urihttps://dspace.mnau.edu.ua/jspui/handle/123456789/16750-
dc.descriptionПовний текст статті доступний з сайту видавця за посиланням: https://link.springer.com/chapter/10.1007/978-3-030-00253-4_17uk_UA
dc.description.abstractThe given chapter is devoted to the development of the mathematical support, in particular, mathematical models and algorithms, which can be successfully used for solving prediction tasks in various areas of human activity, including energetic and ecological management. The development peculiarities and the use of models and algorithms as elements of green technology to predict electric energy consumption based on mathematical apparatus of canonical expansions of random sequences are currently being discussed. Developed calculation method doesn’t impose any limitations on the qualities of random sequences of the change of electric energy consumption (requirement of linearity, Markovian behavior, monotony, stationarity etc.) and has maximal accuracy characteristics in this connection. Block diagrams of algorithms and results of the applied realization of the developed models and algorithms, for example the prediction of electric energy consumption by one of the local neighborhoods in Mykolaiv, Ukraine are introduced in the work. Comparative analysis of the results of a numerical experiment with the use of a Kalman filter and the linear prediction method confirms the high efficiency of the developed models and algorithms (relative error of prediction of electric energy consumption is 2–3%).uk_UA
dc.language.isoenuk_UA
dc.publisherMykolaiv National Agrarian Universityuk_UA
dc.subjectAlgorithmsuk_UA
dc.subjectConsumptionuk_UA
dc.subjectElectrical energyuk_UA
dc.subjectExtrapolationuk_UA
dc.subjectGreen information technologyuk_UA
dc.subjectModelsuk_UA
dc.subjectPredictionuk_UA
dc.subjectGoal 7: Affordable and clean energyuk_UA
dc.subjectGoal 17: Revitalize the global partnership for sustainable developmentuk_UA
dc.subjectRandom Sequenceuk_UA
dc.subjectSmart Homeuk_UA
dc.subjectAutomationuk_UA
dc.titleModels and algorithms for prediction of electrical energy consumption based on canonical expansions of random sequencesuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Статті (Інженерно-енергетичний факультет)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Models and algorithms-2019.pdf1,83 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.