Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/16806
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorVozhehova, Raisa-
dc.contributor.authorФедорчук, Михайло Іванович-
dc.contributor.authorFedorchuk, Mikhail-
dc.contributor.authorKokovikhin, Serhii-
dc.contributor.authorLykhovyd, Pavlo-
dc.contributor.authorNesterchuk, Vasyl-
dc.contributor.authorMrynskii, Ivan-
dc.contributor.authorMarkovska, Olena-
dc.date.accessioned2024-01-17T13:01:45Z-
dc.date.available2024-01-17T13:01:45Z-
dc.date.issued2019-
dc.identifier.citationVozhehova, R., Fedorchuk, M., Kokovikhin, S., Lykhovyd, P., Nesterchuk, V., Mrynskii, I., & Markovska, O. (2019). Modeling Safflower Seed Productivity in Dependence on Cultivation Technology by the Means of Multiple Linear Regression Model. Journal of Ecological Engineering, 20(4), 8–13. https://doi.org/10.12911/22998993/102608uk_UA
dc.identifier.urihttps://dspace.mnau.edu.ua/jspui/handle/123456789/16806-
dc.description.abstractThe results of the study devoted to the evaluation of reliability of the multiple linear regression model for safflower seed yields prediction were presented. Regression model reliability was assessed by the direct comparison of the modeled yields values with the true ones, which were obtained in the field trials with safflower during 2010-2012. The trials were dedicated to study of the effect of various cultivation technology treatments on the safflower seed productivity at the irrigated lands of the South of Ukraine. The agrotechnological factors, which were investigated in the experiments, include: A - soil tillage: A1 - disking at the depth of 14-16 cm; A2 - plowing at the depth of 20-22 cm; B - time of sowing: B1 - 3rd decade of March; B2 - 2nd decade of April; B3 - 3 rd decade of April; C - inter-row spacing: C1 - 30 cm; C2- 45 cm; C3 - 60 cm; D - mineral fertilizers dose: D1 - N 0 P 0 ; D2 - N 30 P 30 ; D3 - N 60 P 60 ; D4 - N 90 P 90 . Regression analysis allowed us to create a model of the crop productivity, which looks as follows: Y = -1.3639 + 0.0213X 1 + 0.0017X 2 - 0.0121X 3 + 0.0045X 4 , where: Y is safflower seed yields, t ha -1 ; X 1 - soil tillage depth, cm; X 2 - sum of the positive temperatures above 10°C; X 3 - inter-row spacing, cm; X 4 - mineral fertilizers dose, kg ha -1 . A direct comparison of the modeled safflower seed yield values with the true ones showed a very slight inaccuracy of the developed model. The maximum amplitude of the residuals averaged to 0.27 t ha -1 . Therefore, we conclude that multiple linear regression analysis can be successfully used in purposes of agricultural modeling.uk_UA
dc.language.isoenuk_UA
dc.subjectCultivation technologyuk_UA
dc.subjectPredictionuk_UA
dc.subjectStatistical analysisuk_UA
dc.subjectYieldsuk_UA
dc.subjectGoal 8: Decent work and economic growthuk_UA
dc.subjectGoal 17: Revitalize the global partnership for sustainable developmentuk_UA
dc.subjectSeed Cottonuk_UA
dc.subjectCotton Fiberuk_UA
dc.subjectGossypium Hirsutumuk_UA
dc.titleModeling safflower seed productivity in dependence on cultivation technology by the means of multiple linear regression modeluk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Статті (Факультет агротехнологій)

Файли цього матеріалу:
Файл Опис РозмірФормат 
pdf-102608-35608.pdf868,31 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.