Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/18751
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorSidenko, Ievgen-
dc.contributor.authorАтаманюк, Ігор Петрович-
dc.contributor.authorAtamanyuk, Igor-
dc.contributor.authorMyroniuk, Oleksandr-
dc.contributor.authorKondratenko, Galyna-
dc.contributor.authorПолторак, Анастасія Сергіївна-
dc.contributor.authorPoltorak, Anastasiya-
dc.contributor.authorKondratenko, Yuriy-
dc.date.accessioned2024-09-25T10:20:14Z-
dc.date.available2024-09-25T10:20:14Z-
dc.date.issued2024-
dc.identifier.citationSidenko, I., Atamanyuk, I., Myroniuk, O., Kondratenko, G., Poltorak, A., & Kondratenko Y. (2024). Hybrid neural network and genetic algorithm combination for recognition and avoidance of vehicle obstacles. 22nd industrial simulation conference, ISC 2024, 88-92.uk_UA
dc.identifier.urihttps://dspace.mnau.edu.ua/jspui/handle/123456789/18751-
dc.description.abstractThis paper is devoted to the research and application of a hybrid combination of neural networks and genetic algorithms for the recognition and avoidance of vehicle obstacles. The paper analyzes the current state of the problem of obstacle recognition by self-driving vehicles, the level of training of relevant systems for self-driving, and what risks and dangers it poses for road users. Various variants of recurrent neural network architectures are investigated, their recognition features are analyzed, and the main advantages and disadvantages are determined. A genetic algorithm is applied to determine the optimal parameters of the system for recognition and avoidance of vehicle obstacles. In the developed intelligent system, the mechanics of moving the car were implemented, the road and lanes were created, artificial sensors were designed to detect obstacles, traffic simulation was implemented, a neural network and a genetic algorithm were designed and implemented, and parallelization of objects was carried out to simulate all possible options for avoiding obstacles. Testing the developed system for recognition and avoidance of vehicle obstacles showed its high efficiency when combining a neural network and a genetic algorithm.uk_UA
dc.language.isoenuk_UA
dc.subjectavoidanceuk_UA
dc.subjectgenetic algorithmsuk_UA
dc.subjectNeural networksuk_UA
dc.subjectrecognitionuk_UA
dc.subjectvehicle obstaclesuk_UA
dc.subjectAlgorithm combinationsuk_UA
dc.subjectAvoidanceuk_UA
dc.subjectCombination of neural-networkuk_UA
dc.subjectHybrid neural networksuk_UA
dc.subjectNeural networks and genetic algorithmsuk_UA
dc.subjectNeural-networksuk_UA
dc.subjectRecognitionuk_UA
dc.subjectResearch and applicationuk_UA
dc.subjectSelf drivingsuk_UA
dc.subjectVehicle obstacleuk_UA
dc.subjectVehicle obstacleuk_UA
dc.subjectDecision-Makinguk_UA
dc.subjectNeural Networkuk_UA
dc.subjectFuzzy Logicuk_UA
dc.titleHybrid neural network and genetic algorithm combination for recognition and avoidance of vehicle obstaclesuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus

Файли цього матеріалу:
Файл Опис РозмірФормат 
HYBRID-NEURAL-2024.pdf2,61 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.