Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/12500
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorАтаманюк, Ігор Петрович-
dc.contributor.authorAtamanyuk, Igor-
dc.contributor.authorГавриш, Валерій Іванович-
dc.contributor.authorHavrysh, Valeriy-
dc.contributor.authorNitsenko, Vitalii-
dc.contributor.authorDiachenko, Oleksii-
dc.contributor.authorTepliuk, Mariia-
dc.contributor.authorChebakova, Tetiana-
dc.contributor.authorTrofimova, Hanna-
dc.date.accessioned2023-02-03T08:14:25Z-
dc.date.available2023-02-03T08:14:25Z-
dc.date.issued2023-
dc.identifier.citationAtamanyuk, I., Havrysh, V., Nitsenko, V., Diachenko, O., Tepliuk, M., Chebakova, T., & Trofimova, H. (2023). Forecasting of winter wheat yield: A mathematical model and field experiments. Agriculture (Switzerland), 13(1) doi:10.3390/agriculture13010041uk_UA
dc.identifier.urihttps://dspace.mnau.edu.ua/jspui/handle/123456789/12500-
dc.description.abstractAn increase in world population requires growth in food production. Wheat is one of the major food crops, covering 21% of global food needs. The food supply issue necessitates reliable mathematical methods for predicting wheat yields. Crop yield information is necessary for agricultural management and strategic planning. Our mathematical model was developed based on a three-year field experiment in a semi-arid climate zone. Wheat yields ranged from 4310 to 6020 kg/ha. The novelty of this model is the inclusion of some stochastic data (weather and technological). The proposed method for wheat yield modeling is based on the theory of random sequence analysis. The model does not impose any restrictions on the number of production parameters and environmental indicators. A significant advantage of the proposed model is the absence of limits on the yield function. Consideration of the stochastic features of wheat production (technological and weather parameters) allows researchers to achieve the best accuracy. The numerical experiment confirmed the high accuracy of the proposed mathematical model for the prediction of wheat yield. The mean relative error (for the third-order polynomial model) varied from 1.79% to 2.75% depending on the preceding crop.uk_UA
dc.language.isoenuk_UA
dc.publisherMykolaiv National Agrarian Universityuk_UA
dc.publisherWarsaw University of Life Sciences-
dc.publisherIvano-Frankivsk National Technical Oil and Gas University-
dc.publisherSCIRE Foundation-
dc.publisherOdessa State Agrarian University-
dc.publisherKyiv National Economic University Vadym Hetman-
dc.publisherUkrainian Institute For Plant Variety Examination-
dc.subjectcropping systemuk_UA
dc.subjectforecastuk_UA
dc.subjectmathematical modeluk_UA
dc.subjectwheat productionuk_UA
dc.titleForecasting of Winter Wheat Yield: A Mathematical Model and Field Experimentsuk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Публікації науково-педагогічних працівників МНАУ у БД Web of Science
Статті (Інженерно-енергетичний факультет)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Atamanyuk-2023-1.pdf1,86 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.