Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/13383
Повний запис метаданих
Поле DCЗначенняМова
dc.contributor.authorЛимар, Олександр Олександрович-
dc.contributor.authorLymar, Oleksandr-
dc.date.accessioned2023-05-03T11:58:23Z-
dc.date.available2023-05-03T11:58:23Z-
dc.date.issued2021-
dc.identifier.citationЛимар О. О. Власні частоти коливань пластини, яка поділяє двошарову ідеальну рідину з вільною поверхнею у прямокутному каналі // Механіка та математичні методи. 2021. Т. ІІІ, Вип. №2. С. 75-88.uk_UA
dc.identifier.urihttps://dspace.mnau.edu.ua/jspui/handle/123456789/13383-
dc.description.abstractДосліджено аналітично і чисельно частотний спектр плоских коливань пружної пластини, яка поділяє двошарову ідеальну рідину з вільною поверхнею в прямокутному каналі. Для довільного закріплення контурів прямокутної пластини показано, що частотний спектр розглянутої задачі складається з двох наборів частот, яки описують коливання вільної поверхні рідини і пружної пластини. Рівняння зв’язаних коливань пластини та рідини представлені у вигляді системи інтегро-диференціальних рівнянь з граничними умовами закріплення контурів пластини та умовою збереження об’єму рідини. При розв’язанні крайової задачі на власні значення форма прогину пластини представляється сумою фундаментальних рішень однорідного рівняння для незакріпленої пластини і часткового розв’язання неоднорідного рівняння у вигляді розкладання за власними функціями коливань ідеальної рідини у прямокутному каналі. Отримано у вигляді визначника четвертого порядку частотне рівняння вільних сумісних коливань пластини та рідини. У випадку затиснених контурів пластини проведено його спрощення і проведені детальні чисельні дослідження першого і другого наборів частот від основних механічних параметрів системи. Відзначається слабкий взаємовплив коливань пластини на коливання вільної поверхні та навпаки. Показано, що зі зменшенням маси пластини частоти другого набору зростають і приймають найбільше значення для безінерційних пластин або мембран. Зменшення частот другого набору відбувається зі збільшенням глибини заповнення верхньої рідини або зі зменшенням глибини заповнення нижньої рідини. З урахуванням двох членів ряду у частотному рівнянні отримано наближені формули для другого набору частот та показано їх ефективність. Зі збільшенням числа членів ряду частотного рівняння попередні корені першого і другого наборів уточнюються та з’являтися нові.uk_UA
dc.language.isootheruk_UA
dc.subjectгідропружністьuk_UA
dc.subjectпрямокутна пластинаuk_UA
dc.subjectпрямокутна пластинаuk_UA
dc.subjectідеальна рідинаuk_UA
dc.subjectвільна поверхняuk_UA
dc.subjectвласні частоти сумісних коливань пластини і рідиниuk_UA
dc.subjecthydroelasticityuk_UA
dc.subjectelastic isotropic rectangular plateuk_UA
dc.subjectelastic isotropic rectangular plateuk_UA
dc.subjectelastic isotropic rectangular plateuk_UA
dc.subjectelastic isotropic rectangular plateuk_UA
dc.titleВласні частоти коливань пластини, яка поділяє двошарову ідеальну рідину з вільною поверхнею у прямокутному каналіuk_UA
dc.title.alternativeEigenfrequencies of oscillations of a plate which separates a two-layer ideal fluid with a free surface in a rectangular channeluk_UA
dc.typeArticleuk_UA
Розташовується у зібраннях:Статті (Інженерно-енергетичний факультет)

Файли цього матеріалу:
Файл Опис РозмірФормат 
7.pdf535,46 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.