Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
https://dspace.mnau.edu.ua/jspui/handle/123456789/14116
Назва: | Machine Learning Algorithms for Binary Classification of Liver Disease |
Автори: | Атаманюк, Ігор Петрович Atamanyuk, Igor Sokoliuk, Anton Kondratenko, Galyna Sidenko, Ievgen Kondratenko, Yuriy Khomchenko, Anatoly |
Ключові слова: | binary classification data mining liver disease machine learning medicine Classification (of information) Data handling Decision trees Diagnosis Learning systems Support vector machines Automatic classification Binary classification Classification algorithm Early diagnosis Liver disease Naive bayes Survival rate Learning algorithms |
Дата публікації: | 2021 |
Видавництво: | Mykolayiv National Agrarian University Petro Mohyla Black Sea National University |
Бібліографічний опис: | Sokoliuk, A., Kondratenko, G., Sidenko, I., Kondratenko, Y., Khomchenko, A., & Atamanyuk, I. (2021). Machine learning algorithms for binary classification of liver disease. 2020 IEEE International Conference on Problems of Infocommunications Science and Technology, PIC S and T 2020 - Proceedings, 417-421. doi:10.1109/PICST51311.2020.9468051 |
Короткий огляд (реферат): | The number of patients with liver diseases has been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles, and drugs. Early diagnosis of liver problems will increase patients' survival rates. Liver disease can be diagnosed by analyzing the levels of enzymes in the blood. Creating automatic classification tools may reduce the burden on doctors. To achieve this numerous classification algorithm (Decision Tree, Random Forest, SVM, Neural Net, Naive Bayes, and others) from different machine learning libraries (Scikit-learn, ML.Net, Keras) are tested against existing liver patients' dataset, considering appropriate for each algorithm preliminary data processing. These algorithms evaluated based on three criteria: accuracy, sensitivity, specificity. |
Опис: | Повний текст доступний з сайту видавця за посиланням: https://ieeexplore.ieee.org/document/9468051 |
URI (Уніфікований ідентифікатор ресурсу): | https://dspace.mnau.edu.ua/jspui/handle/123456789/14116 |
Розташовується у зібраннях: | Публікації науково-педагогічних працівників МНАУ у БД Scopus Статті (Інженерно-енергетичний факультет) |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
Atamanyuk-2021-3.pdf | 1,67 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.