Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/14116
Назва: Machine Learning Algorithms for Binary Classification of Liver Disease
Автори: Атаманюк, Ігор Петрович
Atamanyuk, Igor
Sokoliuk, Anton
Kondratenko, Galyna
Sidenko, Ievgen
Kondratenko, Yuriy
Khomchenko, Anatoly
Ключові слова: binary classification
data mining
liver disease
machine learning
medicine
Classification (of information)
Data handling
Decision trees
Diagnosis
Learning systems
Support vector machines
Automatic classification
Binary classification
Classification algorithm
Early diagnosis
Liver disease
Naive bayes
Survival rate
Learning algorithms
Дата публікації: 2021
Видавництво: Mykolayiv National Agrarian University
Petro Mohyla Black Sea National University
Бібліографічний опис: Sokoliuk, A., Kondratenko, G., Sidenko, I., Kondratenko, Y., Khomchenko, A., & Atamanyuk, I. (2021). Machine learning algorithms for binary classification of liver disease. 2020 IEEE International Conference on Problems of Infocommunications Science and Technology, PIC S and T 2020 - Proceedings, 417-421. doi:10.1109/PICST51311.2020.9468051
Короткий огляд (реферат): The number of patients with liver diseases has been continuously increasing because of excessive consumption of alcohol, inhale of harmful gases, intake of contaminated food, pickles, and drugs. Early diagnosis of liver problems will increase patients' survival rates. Liver disease can be diagnosed by analyzing the levels of enzymes in the blood. Creating automatic classification tools may reduce the burden on doctors. To achieve this numerous classification algorithm (Decision Tree, Random Forest, SVM, Neural Net, Naive Bayes, and others) from different machine learning libraries (Scikit-learn, ML.Net, Keras) are tested against existing liver patients' dataset, considering appropriate for each algorithm preliminary data processing. These algorithms evaluated based on three criteria: accuracy, sensitivity, specificity.
Опис: Повний текст доступний з сайту видавця за посиланням: https://ieeexplore.ieee.org/document/9468051
URI (Уніфікований ідентифікатор ресурсу): https://dspace.mnau.edu.ua/jspui/handle/123456789/14116
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Статті (Інженерно-енергетичний факультет)

Файли цього матеріалу:
Файл Опис РозмірФормат 
Atamanyuk-2021-3.pdf1,67 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.