Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: https://dspace.mnau.edu.ua/jspui/handle/123456789/14299
Назва: On stability of the dual-frequency motion modes of a single-mass vibratory machine with a vibrat ion exciter in the form of a passive auto-balancer
Автори: Yatsun, V.
Filimonikhin, G.
Галєєва, Антоніна Петрівна
Halyeyeva, Antonina
Nevdakha, A.
Ключові слова: Auto-balancer
Dual-frequency vibrations
Inertial vibration exciter
Motion stability
Single-mass vibratory machine
Sommerfeld effect
Дата публікації: 2018
Видавництво: Central Ukrainian National Technical University
Mykolayiv National Agrarian University
Central Ukrainian National Technical University
Бібліографічний опис: Yatsun, V., Filimonikhin, G., Haleeva, A., & Nevdakha, A. (2018). On stability of the dual-frequency motion modes of a single-mass vibratory machine with a vibrat ion exciter in the form of a passive auto-balancer // Eastern-European Journal of Enterprise Technologies, 2(7-92), 59-67. doi:10.15587/1729-4061.2018.128265
Короткий огляд (реферат): By employing computational experiments, we investigated stability of the dual-frequency modes of motion of a single-mass vibratory machine with translational rectilinear motion of the platform and a vibration exciter in the form of a passive auto-balancer. For the vibratory machines that are actually applied, the forces of external and internal resistance are small, with the mass of loads much less than the mass of the platform. Under these conditions, there are three characteristic rotor speeds. In this case, at the rotor speeds: - lower than the first characteristic speed, there is only one possible frequency at which loads get stuck; it is a pre-resonance frequency; - positioned between the first and second characteristic speeds, there are three possible frequencies at which loads get stuck, among which only one is a pre-resonant frequency; - positioned between the second and third characteristic speeds, there are three possible frequencies at which loads get stuck; all of them are the over-resonant frequencies; - exceeding the third characteristic speed, there is only one possible frequency at which loads get stuck; it is the over-resonant frequency and it is close to the rotor speed. Under a stable dual-frequency motion mode, the loads: create the greatest imbalance; rotate synchronously as a whole, at a preresonant frequency. The auto-balancer excites almost perfect dualfrequency vibrations. Deviations of the precise solution (derived by integration) from the approximated solution (established previously using the method of the small parameter) are equivalent to the ratio of the mass of loads to the mass of the entire machine. That is why, for actual machines, deviations do not exceed 2 %. There is the critical speed above which a dual-frequency motion mode loses stability. This speed is less than the second characteristic speed and greatly depends on all dimensionless parameters of the system. At a decrease in the ratio of the mass of balls to the mass of the entire system, critical speed tends to the second characteristic speed. However, this characteristic speed cannot be used for the approximate computation of critical speed due to an error, rapidly increasing at an increase in the ratio of the mass of balls to the mass of the system. Based on the results of a computational experiment, we have derived a function of dimensionless parameters, which makes it possible to approximately calculate the critical speed. © V. Yatsun, G. Filimonikhin, A. Haleeva, A. Nevdakha, 2018.
URI (Уніфікований ідентифікатор ресурсу): https://dspace.mnau.edu.ua/jspui/handle/123456789/14299
Розташовується у зібраннях:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Статті (Інженерно-енергетичний факультет)

Файли цього матеріалу:
Файл Опис РозмірФормат 
2017-04-EEJET-YaVV_FGB_HAP_NAY.pdf652,32 kBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.