Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
https://dspace.mnau.edu.ua/jspui/handle/123456789/14299
Назва: | On stability of the dual-frequency motion modes of a single-mass vibratory machine with a vibrat ion exciter in the form of a passive auto-balancer |
Автори: | Yatsun, V. Filimonikhin, G. Галєєва, Антоніна Петрівна Halyeyeva, Antonina Nevdakha, A. |
Ключові слова: | Auto-balancer Dual-frequency vibrations Inertial vibration exciter Motion stability Single-mass vibratory machine Sommerfeld effect |
Дата публікації: | 2018 |
Видавництво: | Central Ukrainian National Technical University Mykolayiv National Agrarian University Central Ukrainian National Technical University |
Бібліографічний опис: | Yatsun, V., Filimonikhin, G., Haleeva, A., & Nevdakha, A. (2018). On stability of the dual-frequency motion modes of a single-mass vibratory machine with a vibrat ion exciter in the form of a passive auto-balancer // Eastern-European Journal of Enterprise Technologies, 2(7-92), 59-67. doi:10.15587/1729-4061.2018.128265 |
Короткий огляд (реферат): | By employing computational experiments, we investigated stability of the dual-frequency modes of motion of a single-mass vibratory machine with translational rectilinear motion of the platform and a vibration exciter in the form of a passive auto-balancer. For the vibratory machines that are actually applied, the forces of external and internal resistance are small, with the mass of loads much less than the mass of the platform. Under these conditions, there are three characteristic rotor speeds. In this case, at the rotor speeds: - lower than the first characteristic speed, there is only one possible frequency at which loads get stuck; it is a pre-resonance frequency; - positioned between the first and second characteristic speeds, there are three possible frequencies at which loads get stuck, among which only one is a pre-resonant frequency; - positioned between the second and third characteristic speeds, there are three possible frequencies at which loads get stuck; all of them are the over-resonant frequencies; - exceeding the third characteristic speed, there is only one possible frequency at which loads get stuck; it is the over-resonant frequency and it is close to the rotor speed. Under a stable dual-frequency motion mode, the loads: create the greatest imbalance; rotate synchronously as a whole, at a preresonant frequency. The auto-balancer excites almost perfect dualfrequency vibrations. Deviations of the precise solution (derived by integration) from the approximated solution (established previously using the method of the small parameter) are equivalent to the ratio of the mass of loads to the mass of the entire machine. That is why, for actual machines, deviations do not exceed 2 %. There is the critical speed above which a dual-frequency motion mode loses stability. This speed is less than the second characteristic speed and greatly depends on all dimensionless parameters of the system. At a decrease in the ratio of the mass of balls to the mass of the entire system, critical speed tends to the second characteristic speed. However, this characteristic speed cannot be used for the approximate computation of critical speed due to an error, rapidly increasing at an increase in the ratio of the mass of balls to the mass of the system. Based on the results of a computational experiment, we have derived a function of dimensionless parameters, which makes it possible to approximately calculate the critical speed. © V. Yatsun, G. Filimonikhin, A. Haleeva, A. Nevdakha, 2018. |
URI (Уніфікований ідентифікатор ресурсу): | https://dspace.mnau.edu.ua/jspui/handle/123456789/14299 |
Розташовується у зібраннях: | Публікації науково-педагогічних працівників МНАУ у БД Scopus Статті (Інженерно-енергетичний факультет) |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
2017-04-EEJET-YaVV_FGB_HAP_NAY.pdf | 652,32 kB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.