Please use this identifier to cite or link to this item:
https://dspace.mnau.edu.ua/jspui/handle/123456789/16889
Title: | Axisymmetric vibrations of an infinite body with a thin elastic circular inclusion under conditions of smooth contact |
Authors: | Попов, Андрій Сергійович Popov, Andrii Вахоніна, Лариса Володимирівна Vakhonina, Larisa |
Keywords: | Singular Integral Equations Dynamic Stress Intensity Factor Elastic |
Issue Date: | 2011 |
Citation: | Popov, V. G., & Vakhonina, L. V. (2011). Axisymmetric vibrations of an infinite body with a thin elastic circular inclusion under conditions of smooth contact. Journal of Mathematical Sciences, 176(5), 601–615. https://doi.org/10.1007/s10958-011-0425-4 |
Abstract: | We solve an axisymmetric problem of the interaction of harmonic waves with a thin elastic circular inclusion located in an elastic isotropic body (matrix). On both sides of the inclusion, between it and the body (matrix), conditions of smooth contact are realized. The method of solution is based on the representation of displacements in the matrix in terms of discontinuous solutions of Lamé equations for harmonic vibrations. This enables us to reduce the problem to Fredholm integral equations of the second kind for functions related to jumps of normal stress and radial displacement on the inclusion. |
Description: | Повний текст статті доступний з сайту видавця за посиланням: https://link.springer.com/article/10.1007/s10958-011-0425-4 |
URI: | https://dspace.mnau.edu.ua/jspui/handle/123456789/16889 |
Appears in Collections: | Публікації науково-педагогічних працівників МНАУ у БД Scopus Статті (Інженерно-енергетичний факультет) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Axisymmetric vibrations 2011.pdf | 920,52 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.