Please use this identifier to cite or link to this item: https://dspace.mnau.edu.ua/jspui/handle/123456789/16889
Title: Axisymmetric vibrations of an infinite body with a thin elastic circular inclusion under conditions of smooth contact
Authors: Попов, Андрій Сергійович
Popov, Andrii
Вахоніна, Лариса Володимирівна
Vakhonina, Larisa
Keywords: Singular Integral Equations
Dynamic Stress Intensity Factor
Elastic
Issue Date: 2011
Citation: Popov, V. G., & Vakhonina, L. V. (2011). Axisymmetric vibrations of an infinite body with a thin elastic circular inclusion under conditions of smooth contact. Journal of Mathematical Sciences, 176(5), 601–615. https://doi.org/10.1007/s10958-011-0425-4
Abstract: We solve an axisymmetric problem of the interaction of harmonic waves with a thin elastic circular inclusion located in an elastic isotropic body (matrix). On both sides of the inclusion, between it and the body (matrix), conditions of smooth contact are realized. The method of solution is based on the representation of displacements in the matrix in terms of discontinuous solutions of Lamé equations for harmonic vibrations. This enables us to reduce the problem to Fredholm integral equations of the second kind for functions related to jumps of normal stress and radial displacement on the inclusion.
Description: Повний текст статті доступний з сайту видавця за посиланням: https://link.springer.com/article/10.1007/s10958-011-0425-4
URI: https://dspace.mnau.edu.ua/jspui/handle/123456789/16889
Appears in Collections:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Статті (Інженерно-енергетичний факультет)

Files in This Item:
File Description SizeFormat 
Axisymmetric vibrations 2011.pdf920,52 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.