Please use this identifier to cite or link to this item: https://dspace.mnau.edu.ua/jspui/handle/123456789/17056
Title: Computational method for diagnosing cardiovascular diseases with preliminary filtering of measurement errors of cardiogram parameters
Authors: Atamanyuk, Igor
Атаманюк, Ігор Петрович
Kondratenko, Yuriy
Кондратенко, Юрій Пантелійович;
Shebanina, Elena
Шебаніна, Олена В’ячеславівна
Dudziński, Marcin
Borchyk, Yevhen
Борчик, Євген Юрійович
Sadovoi, Alexei
Садовий, Олексій Степанович
Keywords: canonical expansions
Cardiovascular diseases
random sequences
Cardiology
Computational methods
Diagnosis
Diseases
Maximum likelihood
Measurement errors
Numerical methods
Parameter estimation
Random errors
Arbitrary number
Canonical expansion
Cardiovascular disease
Distribution density
Filtering error
Likelihood functions
Maximum likelihood methods
Measurements of
One-dimensional
Random sequence
Stochastic systems
Issue Date: 2023
Citation: Atamaniuk, I., Kondratenko, Y., Shebanina, O., Dudziński, M., Borchik, E., & Sadovoy, O. (2023). Computational method for diagnosing cardiovascular diseases with preliminary filtering of measurement errors of cardiogram parameters. W R. Vingerhoeds & P. De Saqui-Sannes (Red.), Modelling and Simulation’2023. The 2023 European Simulation and Modelling Conference (s. 420–424). EUROSIS-ETI.
Abstract: A computational method for the diagnosis of cardiovascular diseases based on the maximum likelihood method is obtained in the work. The use of the apparatus of nonlinear canonical expansions allowed passing from the multidimensional likelihood function to the product of one-dimensional distribution densities, which allows taking into account an arbitrary number of cardiogram parameters. The main feature of the proposed method is the use of the operation of filtering errors of measurement of the parameters of an cardiogram. The method also makes it possible to fully take into account the stochastic features of cardiograms. A block diagram for calculating the characteristics of the mathematical model of the cardiogram is presented, expressions for the filtering error of measurement errors of the parameters of the cardiogram are obtained. The results of the numerical experiment have confirmed the high efficiency of the method for diagnosing cardiovascular diseases.
Description: © 2023 ESM. All Rights Reserved.
URI: https://dspace.mnau.edu.ua/jspui/handle/123456789/17056
Appears in Collections:Публікації науково-педагогічних працівників МНАУ у БД Scopus
Публікації науково-педагогічних працівників МНАУ у БД Web of Science
Статті (Обліково-фінансовий факультет)
Статті (Інженерно-енергетичний факультет)

Files in This Item:
File Description SizeFormat 
COMPUTATIONAL METHOD FOR DIAGNOSING 2023.pdf739,62 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.