Please use this identifier to cite or link to this item:
https://dspace.mnau.edu.ua/jspui/handle/123456789/14267
Title: | Optimal Polynomial Extrapolation of Realization of a Random Process with a Filtration of Measurement Errors |
Authors: | Атаманюк, Ігор Петрович Atamanyuk, Igor |
Keywords: | Filtration of measurement errors realization Forecasting algorithm Optimal polynomial extrapolation Random processes Algorithms Approximation theory Extrapolation Forecasting Optimization Polynomials Porous materials Random errors Random processes Signal encoding Signal filtering and prediction Forecasting algorithm Markov property Optimal polynomial extrapolation Polynomial algorithm Polynomial extrapolation Stationarity Measurement errors Computer Science: Information Systems Engineering: Control and Systems Engineering Computer Science: Software |
Issue Date: | 2009 |
Publisher: | Mykolayiv National Agrarian University |
Citation: | Atamanyuk, I. P. (2009). Optimal polynomial extrapolation of realization of a random process with a filtration of measurement errors. Journal of Automation and Information Sciences, 41(8), 38-48. doi:10.1615/JAutomatInfScien.v41.i8.40 |
Abstract: | The polynomial algorithm of optimal extrapolation of a random process with a filtration of measurement errors is obtained. The forecasting algorithm, as well as the canonical expansion, taken as a basis, does not impose any significant restrictions on the class of the studied random processes (linearity, Markov property, stationarity, monotony, etc.). |
Description: | Повний текст статті доступний з сайту видавця за посиланнями: https://www.dl.begellhouse.com/journals/2b6239406278e43e,1fa7a8ef07830c7c,5667a6b02d9c2e7c.html# |
URI: | https://dspace.mnau.edu.ua/jspui/handle/123456789/14267 |
Appears in Collections: | Публікації науково-педагогічних працівників МНАУ у БД Scopus Статті (Інженерно-енергетичний факультет) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Atamanyuk-2009-1.pdf | 1,07 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.